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What is word frequency distribution modelling?

I We are interested in analyzing type-token statistics . . .
I such as vocabulary size, type-token ratio,

or the proportion of hapax legomena

I . . . in (random) samples . . .
I more about (non-)randomness later

I . . . from type-rich populations . . .
I words, n-grams and phrases are just the obvious examples
I also subcategorisation patterns, named entities, treebank

grammar rules, collocations, insect species, etc.

I . . . with a skewed, “Zipfian” distribution
I in fact, our models are all based on Zipf’s law

Type-token statistics

Given a sample of N0 tokens, we are
interested in these observations:

I vocabulary size V
(= number of different types)

I number V1 of hapaxes
(= types occurring just once)

I frequency spectrum Vm for m ∈ N
(= types occurring exactly m times)

I development of V (N) and Vm(N) for
increasing samples of 0 ≤ N ≤ N0
tokens (→ vocabulary growth)

I not in frequencies of specific types
I focus on low-frequency data
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LNRE models & applications

I Statistical models for such distributions are known
as LNRE models (Baayen 2001) and allow us to

I estimate population vocabulary size S
I model distribution of type probabilities in population
I extrapolate vocabulary growth
I predict frequency spectrum of unseen data

I Some applications of LNRE models
I measuring morphological productivity
I vocabulary richness (stylometry, child language acquisition)
I quantifying data sparseness
I empirically justified Bayesian priors
I Good-Turing smoothing
I reliability of statistical inference from low-frequency data
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LNRE population models
I LNRE model describes distribution of type probabilities

in a population with a large number of rare events
I One possibility is to specify an equation for Zipf-ranked

type probabilities, e.g. the Zipf-Mandelbrot law

πk =
C

(k + b)a (a > 1, b > 0)

I Better representation as
type density function

I E.g. for Zipf-Mandelbrot:

g(π) = C′·π−α−1 (α = 1
a)

I LNRE models in zipfR
library: ZM, fZM, GIGP
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Expectation & variance

I Expected values E[V (N)] and E[Vm(N)] for random
sample of N tokens can easily be calculated:

E[V ] =

∫ 1

0
(1− e−Nπ)g(π) dπ

E[Vm] =

∫ 1

0

(Nπ)m

m!
e−Nπg(π) dπ

I Variances Var[V (N)] and Var[Vm(N)] are slightly uglier, but
also easy to calculate (same for covariances)



LNRE parameter estimation

I Estimate LNRE model
parameters by comparison
of observed and expected
frequency spectrum

I Nonlinear minimization of
cost function (e.g. MSE)

I Measure goodness-of-fit by
multivariate chi-squared test
(Baayen 2001)

I General observation: GIGP
(and fZM) achieve much better
fit than simple ZM model

I ZM assumes an infinite
population vocabulary!
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Goodness-of-fit & evaluation

I Goodness-of-fit measures how well model describes
training data (df-adjustment corrects for overtraining)

I Evaluation measures we are really interested in:
I accurate extrapolation of vocabulary growth
I reliable prediction of unseen data
I how well model describes true population distribution

I No problem! For a random sample, goodness-of-fit is a
reliable predictor of “interesting” evaluation measures

I overtraining controlled by variance estimates

I Unfortunately . . . corpora aren’t random samples
I key problem: not sampled at token level
I our empirical evaluation will show how seriously LNRE

models are affected by the non-randomness of corpus data
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Data-set preparation and model training

I Corpora:
I British National Corpus (English “balanced” corpus)
I deWaC (German Web data)
I la Repubblica (Italian newspaper data)

I From each corpus, we take 20 non-overlapping samples
of randomly selected documents

I Each of the samples split into
I 1 million tokens for training
I 3 million tokens for testing

I Parameters of ZM, fZM and GIGP estimated
on each training set

I Models used to predict vocabulary size V and number of
hapaxes V1 at sample sizes of 1, 2 and 3 million tokens



rMSE

I Prediction performance measured by relative error:

e =
E[V (N)]− V (N)

V (N)

I Square root of mean square relative error (rMSE),
across 20 samples:

√
rMSE =

√√√√ 1
20
·

20∑
i=1

(ei)2

Outline

Introduction

LNRE models

Evaluation of LNRE models

Results 1

Non-randomness and echoes

Results 2

Conclusion

la Repubblica rMSE (V)
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Goodness-of-fit on training set and prediction accuracy
Correlation: r = −0.89
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la Repubblica rMSE (V): plain vs. randomized
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Term clustering

I chondritic occurs 4 times in the BNC, but all occurrences
are in the same (scientific) document

I As famously put by Church (2000):
The chance of two Noriegas is closer to p/2 than p2

I Term clustering leads to underestimation of vocabulary
size (because number of hapaxes is reduced)



Baayen’s (2001) partition-adjusted models

I Only current non-randomness correction method that can
be used in the context of LNRE modeling

I Models of Church and Gale (1995) and Katz (1996)
account explicitly for non-random distributions (of the term
clustering kind), but there is no tractable mathematical
model that would integrate them into LNRE statistics

I For Baayen’s parameter-adjusted models, population
distribution depends on N → not a proper LNRE model

I Population partitioned into
I normal types that satisfy random sampling assumption and
I totally underdispersed types that concentrate all

occurrences in a single “burst”
I Standard LNRE model used for normal part of the

population; simple linear growth for underdispersed part

Echo adjustment

I Tackle non-randomness as a pre-processing problem:
the issue is with the way we count occurrences of types

I Rare, topic-specific content words occur maximally once in
a document

I All other apparent instances of such words are instances
of a special “anaphoric” type that has function of “echoing”
the content words in a document

I Before:
... the result of an impactor of carbonaceous
chondritic composition ... A typical strength of
a chondritic impactor is ...

I After:
... the result of an impactor of carbonaceous
chondritic composition ... A typical strength of
a ECHO ECHO is ...

Echo adjustment

I After echo adjustment, we are effectively counting
document frequencies, that are not subject to
within-document term clustering effects

I However, by replacing repeated words with echo tokens,
we can stick to word token sampling model, so that LNRE
models can be applied “as is”
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Correlation: r = 0.94
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Directions for future work

I Echo-adjusted predictions pertain to distributions of
document frequencies: what are the implications of this?

I Quality still not fully satisfying, especially at large
prediction sizes (we would like to extrapolate V and other
quantities to 100 times the training size and more!)
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zi!  
user-friendly LNRE modelling

available on CRAN

http://purl.org/stefan.evert/zipfR
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Appendix: bias & variance of predictors
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Appendix: bias & variance for randomized data
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Appendix: type & probability density of LNRE models
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