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1 Introduction14

Linguists look for generalizations and explanations of various kinds of linguistic phenom-15

ena. While the interest is usually in an intensional view of these phenomena, to be ex-16

plained in terms of the human language competence, such competence cannot be directly17

observed. Thus, evidence has to come from an external reflection of it, i.e., it has to be18

based on an extensional view of language. According to this extensional view, a language19

is defined as the set of all utterances produced by speakers of the language (with all the20

paradoxes that this view implies – see, e.g., Chomsky 1986, Chapter 2). Corpora are finite21

samples from the infinite set that constitutes a language in this extensional sense. For22

example, in this perspective, the Brown corpus (see article 22) is a finite sample of all23

the utterances produced in written form by American English speakers. Psycholinguis-24

tic experiments, such as eye-tracking tests, priming, and even traditional grammaticality25



judgments (Schütze 1996) constitute other sources of evidence. It is important to observe1

that the empirical analysis of these other sources also requires an extensional view of2

language.3

It is rarely the case that linguists are interested in the samples per se, rather than4

in generalizations from the samples to the infinite amount of text corresponding to the5

extensional definition of a (sub)language. For example, a linguist studying a pattern in the6

500 text samples of the Brown corpus will typically be interested in drawing conclusions7

about (written) American English as a whole, and not just about the specific texts that8

compose the Brown. Statistical inference allows the linguist to generalize from properties9

observed in a specific sample (corpus) to the same properties in the language as a whole10

(statistical inference, on the other hand, will not be of help in solving thorny issues such11

as what is the appropriate extensional definition of a “language as a whole” and how we12

can sample from that).13

Statistical inference requires that the problem at hand is operationalized in quantita-14

tive terms, typically in the form of units that can be counted in the available sample(s).15

This is the case we will concentrate on here (but see Section 8 for other kinds of mea-16

surements). For example, a linguist might be interested in the issue of whether a certain17

variety of English is more “formal” than another (as in some of Douglas Biber’s work, see18

article 40). In order to operationalize this research question, the linguist might decide to19

take passivization as a cue of formality, and count the number of sentences that display20

passivization in samples from the two varieties. Statistical inference can then be used21

to generalize from the difference in number of passives between the two samples to the22

difference between the two varieties that the samples represent (we will discuss this ex-23

ample and the appropriate techniques further in Section 5). Similarly, a linguist might be24

interested in whether (certain classes of) idiomatic constructions have a tendency to repel25

passive formation (as observed by Culicover/Jackendoff 2005 and many others). In order26

to operationalize this question, the linguist may count the number of passives in idiomatic27

and non-idiomatic phrases in a corpus. Statistical inference will then help to determine28

how reliably the attested difference in passive frequency would generalize to idiomatic and29

non-idiomatic phrases at large. Of course, it is up to the linguist to interpret the gen-30

eralizations about frequencies produced by statistical analysis in terms of the linguistic31

phenomena of interest.32

Statistical inference is necessary because any sample from a language is subject to ran-33

dom variation. Suppose that someone doubted the claim that non-idiomatic constructions34

are more prone to passivization than idiomatic constructions, and we wanted to dispel35

these doubts. A sample of language that reveals a higher proportion of passives among36

the non-idiomatic constructions, especially if the difference in proportions is small, would37

not allow us to reject the doubters’ hypothesis: even if they were right, we could not expect38

the proportions to be exactly identical in all samples of language. Statistical inference can39

help us to determine to what extent the difference between a sample-based observation40

and a theoretical prediction can be taken as serious evidence that the prediction made41

by the theory is wrong, and to what extent it can reasonably be attributed to random42

variation. In the case at hand, statistical inference would tell us whether the difference in43

passive rates in the two samples can be explained by random variation, or whether it is the44

symptom of a true underlying difference. It is perhaps worth clarifying from the outset45

that randomness due to sampling has to be distinguished from measurement errors, such46

as those introduced by the automatic annotation and analysis of corpus data (something47

that statistical methods will not help us correct). Suppose that a very skilled linguist sam-48

pled 100 English sentences and recorded very carefully how many of them are passives,49
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without making any errors. It should be intuitive that, given another random sample of1

100 sentences and the same error-free linguist, the exact number of passives would proba-2

bly be different from the one found in the previous sample. This is the random variation3

we are referring to here.4

Notice that the necessity of statistical inference pertains to the need to generalize5

from a finite (random) sample of language data to the theoretically infinite amount of6

text corresponding to the extensional definition of an entire (sub)language, and it has7

nothing to do with whether our theory about the phenomenon at hand, or about language8

competence in general, includes a probabilistic component. The prediction that idiomatic9

sentences repel the passive construction might stem from a completely categorical theory10

of how passives and idiomaticity interact – still, randomly sampled English sentences will11

display a certain amount of variation in the exact proportion of passives they contain.12

The rest of this article introduces the basics of statistical inference. We use the artifi-13

cially simple example of testing a hypothesis about the proportion of passives in English14

sentences (and later proportions of passives in sentences from different English genres), in15

order to focus on the general philosophy and methodology of statistical inference as ap-16

plied to corpus linguistics, rather than on the technical details of carrying out the relevant17

computations, which can be found in many general books on the subject and are imple-18

mented in all standard statistical packages (see references in Section 9). Section 6 gives19

examples of how statistical inference can be applied to more realistic linguistic analysis20

settings.21

2 The logic behind hypothesis testing22

Imagine that an American English style guide claims that 15% of the sentences in the23

English language are in the passive voice (as of June 2006, http://www.ego4u.com/en/24

business-english/grammar/passive makes the even bolder statement that no more than25

10% of English sentences are in the passive voice and writers should be careful to use26

passives sparingly). This is a fairly easy claim to operationalize, since it is already phrased27

in terms of a proportion. However, we still need to define what we understand by “the28

English language”, and what it means for a sentence to be in the passive voice. Given29

the source of the claim and our need for an extensional definition, it makes sense to30

take “English” to mean the set of all English texts published in the US and produced by31

professional writers. Regarding the second issue, we consider a sentence to be in the passive32

voice if it contains at least one verb in the passive form, which seems to be a plausible33

interpretation of what the style guide means (after all, it is warning against the overuse of34

passives), and at the same time makes it easier to count the number of sentences in passive35

voice using automated pattern matching techniques (which might not be relevant with the36

small samples we use here, but would be important when dealing with large amounts of37

data).38

It is of course impossible to look at all sentences in all the publications satisfying39

the criteria above – what we can do, at best, is to select a random sample of them. In40

particular, we took a random sample of 100 sentences of the relevant kind, and we counted41

the number of them containing a passive. For convenience, we restricted ourselves to42

publications from 1961, because we are lucky enough to already own a random sample of43

sentences of the relevant kind from that year – namely, the Brown corpus! All we had44

to do was select 100 random sentences from this random sample (we will see in Section 745

that it is not entirely correct to treat sentences from the Brown as a random sample, but46

we ignore this for now).47
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If the style guide’s claim is true, we would expect 15 sentences to be in the passive1

voice. Instead, we found 19 passives. This seems to indicate that the proportion is higher2

than 15% and rather close to 20%. However, it is obvious that, even if the claim of the3

style guide was correct, not all samples of size 100 would have exactly 15 passives, because4

of random variation. In light of this, how do we decide whether 19 passives are enough to5

reject the style guide’s claim?6

In statistical terms, the claim that we want to verify is called a null hypothesis, H0 : π =7

15%, where π is the putative proportion of passives in the set of sentences that constitute8

our extensional definition of American English. This set of sentences is usually called a9

population in statistical parlance, and the goal of statistical inference is to draw conclusions10

about certain properties of this population from an available sample (the population itself11

is practically infinite for all intents and purposes, and we can only access a small finite12

subset of it). We will often refer to π as a population proportion or parameter in what13

follows. The number of sentences we have randomly sampled from the population is called14

the sample size, n = 100. Intuitively, we expect e = n · π = 15 passives in the sample if15

the null hypothesis is true. This is called the expected frequency. The number of passives16

we actually observed in the sample, f = 19, is called the observed frequency.17

Having introduced the terminology, we can rephrase the problem above as follows. If18

we are prepared to reject the null hypothesis that π = 15% for an observation of f = 19,19

there is a certain risk that in doing so we are making the wrong decision. The question is20

how we can quantify this risk and decide whether it is an acceptable risk to take. Imagine21

that the null hypothesis in fact holds, and that a large number of linguists perform the22

same experiment, sampling 100 sentences and counting the passives. We can then formally23

define risk by the percentage of linguists who wrongly reject the null hypothesis, and thus24

publish incorrect results. In particular, if our observation of f = 19 is deemed sufficient for25

rejection, all the other linguists who observed 19 or even more passives in their samples26

would also reject the hypothesis. The risk is thus given by the percentage of samples27

containing 19 or more passives that would be drawn from a language in which the true28

proportion of passives is indeed 15%, as stipulated by H0. Rejecting the null hypothesis29

when it is in fact true is known as a type-1 error in the technical literature (failure to30

reject H0 when it does not hold constitutes a type-2 error, which we do not discuss here,31

but see, e.g., DeGroot/Schervish 2002, Chapter 8).32

Fortunately, we do not need to hire hundreds of linguists to compute the risk of wrong33

rejection, since the thought experiment above is fully equivalent to drawing balls from an34

urn. Each ball represents a sentence of the language, with red balls for passive sentences35

and white balls for sentences in other voices. The null hypothesis stipulates that the36

proportion of red balls in the urn is 15%. The observed number of red balls (passives)37

changes from sample to sample. In statistical terminology, it is called a random variable,38

typically denoted by a capital letter such as X. We simulate a large number of samples39

from the urn with a computer and tabulate how often each possible value k of the random40

variable X is observed. The result of this simulation is shown in Figure 1, which reports41

percentages of samples that yield X = k for k ranging from 0 to 30 (the percentage is42

indistinguishable from 0 for all values outside this range). For instance, the value X = 1943

can be observed in 5.6% of the samples. The information presented in this graph is called44

the sampling distribution of X under H0. The percentage of samples with X = k is called45

the probability Pr(X = k). For example, Pr(X = 19) = 5.6% (our reasoning in this section46

has led us to what is known as the frequentist definition of probabilities; we do not discuss47

the alternative Bayesian interpretation of probability theory here, but see for example48

Section 1.2 of DeGroot/Schervish 2002).49
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Figure 1: Sampling distribution of X with n = 100 and π = 15%.

Following the discussion above, the risk of wrongly rejecting the null hypothesis for1

an observation of f = 19 is given by the percentage of samples with X ≥ 19 in the2

sampling distribution, i.e., the probability Pr(X ≥ 19). This probability can be computed3

by summing over the shaded bars in Figure 1:4

Pr(X ≥ 19) = Pr(X = 19) + Pr(X = 20) + · · ·+ Pr(X = 100) = 16.3% (1)

This is called a tail probability because it sums over the right-hand “tail” of the dis-5

tribution. In the same way, we can compute the risk associated with any other value f ,6

namely the probability:7

Pr(X ≥ f) :=
n∑

k=f

Pr(X = k) (2)

We refer to this risk as the p-value of an observation f . Notice that smaller p-values8

are more significant, since they indicate that it is less risky to reject the null hypothesis,9

and hence they allow greater confidence in the conclusion that the null hypothesis should10

be rejected. In our example, the p-value associated with f = 19 indicates that the risk of11

false rejection is unacceptably high at p = 16.3%. If we used f = 19 as the threshold for12

rejection and the null hypothesis happened to be true, about one in six experiments would13

lead to wrong conclusions. In order to decide whether to reject H0 or not, the computed14

p-value is often compared with a conventional scale of significance levels. A p-value below15

5% is always required to consider a result significant. Other common significance levels16

are 1% and 0.1% (usually written as mathematical fractions rather than percentages and17

denoted by the symbol α, viz. α = .05, α = .01 and α = .001).18

So far, we have only been considering cases in which the observed frequency is greater19

than the one predicted under H0 – reflecting our intuition that the proportion of passives20

proposed by the style guide errs on the side of being too low, rather than too high.21

However, in principle it would also be possible that the proportion of passives is lower22

than predicted by H0. Coming back to our passive-counting linguists, if they are prepared23
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to reject H0 for f = 19, they should also reject it for X = 7 or X = 8, since these values1

are even more “extreme” than 19 with respect to H0. Thus, when computing the p-value2

of f = 19, it is typically appropriate to sum over the probabilities of all values that are at3

least as “extreme” as the observed value, to either side of the expected frequency e, since4

they add to the risk of false rejection.5

It is difficult to determine exactly which of the values below e should count as equally6

extreme as, or more extreme than f , but one reasonable approach is to include all the7

values of X with an absolute difference |X − e| ≥ |f − e|. Using |f − e| (or, more precisely,8

(f −e)2, which has certain mathematical advantages) as a measure of “extremeness” leads9

to a class of statistical tests known as chi-squared tests. An alternative approach would10

rather compare the probabilities Pr(X = k) and Pr(X = f) as a measure of extremeness,11

resulting in a class known as likelihood (ratio) tests. In many common cases, both classes12

of tests give very similar results. We will focus on chi-squared tests in this article, but see13

article 57 for an application where likelihood tests are known to be superior.14

In the case at hand, using the chi-squared criterion, the p-value would be computed15

by adding up the probabilities of X ≥ 19 and X ≤ 11 (since |19− 15| = 4 = |11− 15|).16

In the illustration shown in Figure 1, we would add the bars for k = 1 . . . 11 to the shaded17

area. This way of computing the p-value, taking both “extreme” tails of the distribution18

into account, is called a two-tailed test (the approach above, where we considered only one19

side, is known as a one-tailed test). Of course, a two-tailed p-value is always greater than20

(or equal to) the corresponding one-tailed p-value. In our running example, the two-tailed21

p-value obtained by summing over the bars for X ≤ 11 and X ≥ 19 turns out to be 32.6%,22

indicating a very high risk if we chose to reject the null hypothesis for f = 19 (you might23

obtain a different p-value if the binomial test implemented in your software package uses24

the likelihood criterion, although the value will still indicate a very high risk in case of25

rejection). Had our experiment yielded 22 passives instead, the one-tailed test would have26

produced a p-value of 3.9%, while the two-tailed test would have given a p-value of 6.7%.27

Thus, by adopting the common 5% significance threshold, we would have had enough28

evidence to reject the null hypothesis according to the one-tailed test, but not enough29

according to the two-tailed test.30

As a general rule, one should always use the more conservative two-tailed test, unless31

there are very strong reasons to believe that the null hypothesis could only be violated32

in one direction – but it is hard to think of linguistic problems where this is the case33

(in many situations we can predict the probable direction of the violation, but there are34

very few cases where we would be ready to claim that a violation in the other direction is35

absolutely impossible). If we use a two-tailed test, the interpretation of a significant result36

will of course have to take into account whether f is greater or smaller than e. Observed37

frequencies of 25 and 5 passives, respectively, would both lead to a clear rejection of the38

null hypothesis that 15% of all sentences are in the passive voice, but they would require39

rather different explanations.40

Not only have we been spared the expense of hiring passive-counting linguists to repeat41

the experiment; it is not even necessary to perform expensive computer simulation exper-42

iments in order to carry out the sort of tests we just illustrated, because Pr(X = k) – the43

percentage of samples of size n from a population with proportion π of passive sentences44

that would result in a certain value k of the random variable X – can be computed with45

the following formula, known as the binomial distribution (the hypothesis test we have46

described above, unsurprisingly, is called a binomial test):47

Pr(X = k) =
(

n

k

)
(π)k(1− π)n−k (3)
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The binomial coefficient
(
n
k

)
, “n choose k”, represents the number of ways in which an1

unordered set of k elements can be selected from n elements. Any elementary textbook on2

probability theory or statistics will show how to compute it; see, e.g., DeGroot/Schervish3

(2002, Section 1.8). Of course, all statistical software packages implement binomial coef-4

ficients and the binomial distribution.5

For a different null hypothesis about the population proportion π or a different sample6

size n, we obtain sampling distributions with different peaks and shapes – in statistical7

terminology, π and n are the parameters of the binomial distribution. In particular, the8

value of π affects the location of the peak in the histogram. For example, if we hypothesized9

that π = 30%, we would see a peak around the expected value e = n · π = 30 in the10

histogram corresponding to Figure 1. Intuitively, experiments in which we draw 1,00011

balls will tend to produce outcomes that are closer to the expected value than experiments12

in which we draw 100 balls. Thus, by decreasing or increasing n, we obtain distributions13

that have narrower or wider shapes, respectively. A sample of size 100 is small by the14

standards of statistical inference. As Karl Pearson, one of the founding fathers of modern15

statistics, once put it: “Only naughty brewers deal in small samples!” (cf. Pearson 1990,16

73; this quip was a reference to W. S. Gosset, an employee of the Guinness brewery who17

developed and published the now famous t-test under the pseudonym of “Student”). It18

will typically be difficult to reject H0 based on such a sample, unless the true proportion19

is very far away from the null hypothesis, exactly because a small sample size leads to a20

wide sampling distribution. Had we taken a sample of 1,000 sentences and counted 19021

passives, the null hypothesis would have been clearly rejected (a two-sided binomial test22

with f = 190, n = 1000 and H0 : π = 15% gives a p-value of p = 0.048%, sufficient for23

rejection even at the very conservative significance level α = .001).24

The procedure of hypothesis testing that we introduced in this section is fundamental25

to understanding statistical inference. At the same time, it is not entirely intuitive. Thus,26

before we move on, we want to summarize its basic steps. For the whole process to be27

meaningful, we must have a null hypothesis H0 that operationalizes a research question28

in terms of a quantity that can be computed from observable data. In our case, the null29

hypothesis stipulates that the proportion of passives in the population of (professionally30

written American) English sentences is 15%, i.e.: H0 : π = 15%. We draw a random31

sample of size n of the relevant units (100 sentences in our case) from the population,32

and count the number of units that have the property of interest (in our case, being33

passive sentences). Given the population proportion stipulated by the null hypothesis34

and the sample size, we can determine a sampling distribution (by simulation or using35

a mathematical formula). The sampling distribution specifies, for each possible outcome36

of the experiment (expressed by the random variable X, which in our case keeps track37

of the frequency of passives in the sample), how likely it is under the null hypothesis.38

This probability is given by the percentage of a large number of experiments that would39

produce the outcome X in a world in which the null hypothesis is in fact true. The40

sampling distribution allows us, for every possible value k of X, to compute the risk of41

making a mistake when we are prepared to reject the null hypothesis for X = k. This risk,42

known as the p-value corresponding to k, is given by the overall percentage of experiments43

that give an outcome at least as extreme as X = k in a world in which the null hypothesis44

is true (see above for the one- and two-tailed ways to interpret what counts as “extreme”).45

At this point, we look at the actual outcome of the experiment in our sample, i.e., the46

observed quantity f (in our case, f is the number of passives in a sample of 100 sentences),47

and we compute the p-value (risk) associated with f . In our example, the (two-tailed)48

p-value is 32.6%, indicating a rather high risk in rejecting the null hypothesis. We can49
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compare the p-value we obtained with conventional thresholds, or significance levels, that1

correspond to “socially acceptable” levels of risk, such as the 5% threshold α = .05. If2

the p-value is higher than the threshold, we say that the results of the experiment are not3

statistically significant, i.e., there is a non-negligible possibility that the results would be4

obtained by chance even if the null hypothesis is true.5

Notice that a non-significant result simply means that our evidence is not strong enough6

to reject the null hypothesis. It does not tell us that the null hypothesis is correct. In our7

example, although the observed frequency is not entirely unlikely under the null hypothesis8

of a passive proportion of 15%, there are many other hypotheses under which the same9

result would be even more likely, most obviously, the hypothesis that the population pro-10

portion is 19%. Because of this indirect nature of statistical hypothesis testing, problems11

undergoing statistical treatment are typically operationalized in a way in which the null12

hypothesis is “uninteresting”, or contradicts the theory we want to support. Our hope is13

that the evidence we gather is strong enough to reject H0. We will come back to this in14

Section 5 below, presenting a two-sample setting where this strategy should sound more15

natural.16

While many problems require more sophisticated statistical tools than the ones de-17

scribed in this section, the basic principles of hypothesis testing will be exactly the same18

as in the example we just discussed.19

3 Estimation and effect size20

Suppose that we ran the experiment with a sample of n = 1,000 sentences, f = 190 of21

which turned out to be in the passive voice. As we saw in the previous section, this result22

with the larger sample leads to a clear rejection of the null hypothesis H0 : π = 15%. At23

this point, we would naturally like to know what the true proportion of passives is in edited24

American English. Intuitively, our best guess is the observed proportion of passives in the25

sample, i.e., π̂ = f/n. This intuitive choice can also be justified mathematically. It is then26

known as a maximum-likelihood estimate or MLE (DeGroot/Schervish 2002, Section 6.5).27

Since we have estimated a single value for the population proportion, π̂ is called a point28

estimate. The problem with point estimates is that they are subject to the same amount29

of random variation as the observed frequency on which they are based: most linguists30

performing the same experiment would obtain a different estimate π̂ = X/n (note that,31

mathematically speaking, π̂ is a random variable just like X, which assumes a different32

value for each sample).33

Let us put the question in a slightly different way: besides the point estimate π̂ = 19%,34

which other values of π are also plausible given our observation of f = 190 passives in a35

sample of n = 1,000 sentences? Since H0 : π = 15% was rejected by the binomial test, we36

know for instance that the value π = 15% is not plausible according to our observation.37

This approach allows us to answer the question in an indirect way. For any potential38

estimate π = x, we can perform a binomial test with the null hypothesis H0 : π = x in39

order to determine whether the value x is plausible (H0 cannot be rejected at the chosen40

significance level α) or not (H0 can be rejected). Note that failure to reject H0 does not41

imply that the estimate x is very likely to be accurate, but only that we cannot rule out42

the possibility π = x with sufficient confidence. Figure 2 illustrates this procedure for six43

different values of x, when f = 190 and n = 1, 000. As the figure shows, H0 : π = 17%44

would not be rejected, and thus 17% is in our set of plausible values. On the other hand,45

H0 : π = 16.5% would be rejected, and thus 16.5% is not in our set.46

Collecting all plausible values π = x, we obtain a confidence set. For the binomial47
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Figure 2: Illustration of the procedure for estimating a confidence set
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n = 100 n = 1,000 n = 10,000
k = 19 k = 190 k = 1,900

α = .05 11.8% . . . 28.1% 16.6% . . . 21.6% 18.2% . . . 19.8%
α = .01 10.1% . . . 31.0% 15.9% . . . 22.4% 18.0% . . . 20.0%
α = .001 8.3% . . . 34.5% 15.1% . . . 23.4% 17.7% . . . 20.3%

Table 1: Binomial confidence intervals for various sample sizes n and confidence levels α.
The maximum-likelihood estimate is π̂ = 19% in each case.

test, this confidence set is an uninterrupted range of numbers and is called a binomial1

confidence interval. Of course, it is infeasible to perform separate hypothesis tests for the2

infinite number of possible null hypotheses π = x, but specialized mathematical algorithms3

(available in all standard statistical software packages) can be used to compute the end4

points of binomial confidence intervals efficiently. In our example, the observed data5

f = 190 and n = 1,000 yield a confidence interval of π ≈ 16.6% . . . 21.6% (the common6

mathematical notation for such a range, which you may encounter in technical literature,7

is [.166, .216]).8

The width of a binomial confidence interval depends on the sample size n and the9

significance level α used in the test. As we have seen in Section 2, a larger value of10

n makes it easier to reject the null hypothesis. Obviously, adopting a higher (i.e., less11

conservative) value of α also makes it easier to reject H0. Hence these factors lead to12

a narrower confidence interval (which, to reiterate this important point, consists of all13

estimates x for which H0 is not rejected). Table 1 shows confidence intervals for several14

different sample sizes and significance levels. A confidence interval for a significance level of15

α = .05 (which keeps the risk of false rejection below 5%) is often called a 95% confidence16

interval, indicating that we are 95% certain that the true population value π is somewhere17

within the range (since we can rule out any other value with 95% certainty). Similarly, a18

significance level of α = .01 leads to a 99% confidence interval.19

Confidence intervals can be seen as an extension of hypothesis tests. The 95% confi-20

dence interval for the observed data immediately tells us whether a given null hypothesis21

H0 : π = x would be rejected by the binomial test at significance level α = .05. Namely,22

H0 is rejected if and only if the hypothesized value x does not fall within the confidence23

interval. The width of a confidence interval illustrates thus how easily a null hypothesis24

can be rejected, i.e., it gives an indication of how much the (unknown) true population25

proportion π must differ from the value stipulated by the null hypothesis (which is often26

denoted by the symbol π0) so that H0 will reliably be rejected by the hypothesis test.27

Intuitively speaking, the difference between π and π0 has to be considerably larger than28

the width of one side of the 95% confidence interval so that it can reliably be detected by a29

binomial test with α = .05 (keep in mind that, even when the difference between π and π030

is larger than this width, because of sampling variation, π̂ and π0 might be considerably31

closer, leading to failure to reject H0). The term effect size is sometimes used as a generic32

way to refer to the difference between null hypothesis and true proportion. The reliability33

of rejection given a certain effect and sample size is called the power of the hypothesis34

test (see DeGroot/Schervish 2002, Chapter 8). In our example, the arithmetic difference35

π−π0 is a sensible way of quantifying effect size, but many other measures exist and may36

be more suitable in certain situations (we will return to this issue during the discussion of37

two-sample tests in Section 5).38

In corpus analysis, we often deal with very large samples, for which confidence intervals39

will be extremely narrow, so that a very small effect size may lead to highly significant40
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rejection of H0. Consider the following example: Baayen (2001, 163) claims that the1

definite article the accounts for approx. 6% of all words in (British) English, including2

punctuation and numbers. Verifying this claim on the LOB (the British equivalent of the3

Brown corpus, see article 22), we find highly significant evidence against H0. In particular,4

there are f = 68,184 instances of the in a sample of n = 1,149,864 words. A two-sided5

binomial test for H0 : π = 6% rejects the null hypothesis with a p-value of p ≈ 0.1%.6

However, the MLE for the true proportion π is actually very close to 6%, viz. π̂ =7

5.93%, and the 95% confidence interval is π = 5.89% . . . 5.97%. This difference is certainly8

not of scientific relevance, and π̂ as well as the entire confidence range would be understood9

to fall under Baayen’s claim of “approximately 6%”. The highly significant rejection10

is merely a consequence of the large sample size and the corresponding high power of11

the binomial test. Gries (2005) is a recent discussion of the “significance” of statistical12

significance in corpus work.13

At the opposite end of the scale, it is sometimes important to keep the sample size as14

small as possible, especially when the preparation of the sample involves time-consuming15

manual data annotation. Power calculations, which are provided by many statistical soft-16

ware packages, can be used to predict the minimum sample size necessary for a reliable17

rejection of H0, based on our conjectures about the true effect size.18

4 The normal approximation19

Looking back at Figure 1, we can see that the binomial sampling distribution has a fairly20

simple and symmetric shape, somewhat reminiscent of the outline of a bell. The peak of21

the curve appears to be located at the expected frequency e = 15. For other parameter22

values π and n, we observe the same general shape, only stretched and/or translated. This23

bell-shaped curve can be described by the following mathematical function:24

f(x) :=
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(4)

This is the formula of a normal or Gaussian distribution (DeGroot/Schervish 2002,25

Section 5.6). The parameter µ, called the mean, will determine the peak of the bell-shaped26

curve, and the parameter σ, called the standard deviation, will determine the width of the27

curve (the symbol π in this formula stands for Archimedes’ constant π = 3.14159 . . . and28

not for a population proportion; to avoid another ambiguity, we write exp
(
− (x−µ)2

2σ2

)
for29

the exponential function in lieu of the more commonly encountered e−(x−µ)2/2σ2
, since30

we are using e to denote the expected frequency). The roles of the two parameters are31

illustrated in Figure 3.32

A binomial distribution with parameters n and π is approximated by a normal distri-33

bution with parameters µ = nπ and σ =
√

nπ(1− π). Figure 4 shows the same binomial34

distribution illustrated in Figure 1 (with sample size n = 100 and proportion π = 15%)35

and the corresponding normal approximation with parameters µ = 15 and σ ≈ 3.57. The36

quality of the approximation will increase with sample size and it will depend on π not37

being too skewed (i.e., not too close to 0 or 1). A rule of thumb might be to trust the38

approximation only if σ > 3, which is the case in our example (if you refer back to the39

formula for σ, you will notice that it depends, indeed, on n and the skewness of π).40

The parameters of the normal approximation can be interpreted in an intuitive manner:41

µ coincides with the expected frequency e under H0 (remember from Section 2 that e is also42

given by nπ; we will use µ when referring to the normal distribution formula, e otherwise,43

but keep in mind that the two symbols denote the same quantity). σ tells us how much44
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Figure 3: Interpretation of the parameters µ and σ of the normal distribution.

random variation we have to expect between different samples. Most of the samples will1

lead to observed frequencies between µ− 2σ and µ + 2σ and virtually all observed values2

will lie between µ− 3σ and µ + 3σ (refer to Figure 3 again), provided that H0 is true.3

To compute binomial tail probabilities based on a normal approximation, one calculates4

the corresponding area under the bell curve, as illustrated in Figure 4 for the tail proba-5

bility Pr(X ≥ 19). In this illustration, we have also applied Yates’ continuity correction6

(DeGroot/Schervish 2002, Section 5.8), which many statistical software packages use to7

make adjustments for the discrepancies between the smooth normal curve and the discrete8

distribution that is approximated. In our example, Yates’ correction calculates the area9

under the normal curve for x ≥ 18.5 rather than x ≥ 19.10

We find that the normal approximation gives a one-tailed p-value of 16.3% for observed11

frequency f = 19, sample size n = 100 and null hypothesis H0 : π = 15%. This is12

the same p-value we obtained from the (one-tailed) binomial test, indicating that the13

approximation is very good. Given that the normal distribution (unlike the binomial!)14

is always symmetrical, the two-tailed p-value can be obtained by simply multiplying the15

one-tailed value by two (which corresponds to adding up the tail areas under the curve for16

values that are at least as extreme as the observed value, with respect to e). In our case17

this gives 32.6%, again equivalent to the binomial test result.18

There are two main reasons why the normal approximation is often used in place of the19

binomial test. First, the exact (non-approximated) binomial test and binomial confidence20

intervals require computationally expensive procedures that, for large sample sizes such21

as those often encountered in corpus-based work, can be problematic even for modern22

computing resources (a particularly difficult case is the extension of confidence intervals23

to the two-sample setting that we introduce in Section 5 and beyond). Second, the normal24

approximation leads to a more intuitive interpretation of the difference f − e between25

observed and expected frequency, and the amount of evidence against H0 that it provides26

(the importance of a given raw difference value depends crucially on sample size and on27

the null hypothesis proportion π0, which makes it hard to compare across samples and28

experiments).29
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Figure 4: Approximation of binomial sampling distribution by normal distribution curve.

An interpretation of f − e (or, equivalently f − µ) that is comparable, e.g., between1

samples of different sizes, is achieved by a normalized value, the z-score, which divides2

f − µ by the standard deviation σ (you can think of this as expressing f − µ in σ’s, i.e.,3

using σ as the “unit of measurement”):4

z :=
f − µ

σ
(5)

If two observations f1 and f2 (possibly coming from samples of different sizes and5

compared against different null hypotheses) lead to the same z-score z1 = z2, they are6

equally “extreme” in the sense that they provide the same amount of evidence against their7

respective null hypothesis (as given by the approximate p-values). To get a feel for this,8

refer back to Figure 3, which illustrates the approximate two-tailed p-value corresponding9

to z = 2 as a shaded area under the normal curve. This area has exactly the same size10

regardless of the specific shape of the curve implied by H0 (in the form of the parameters11

µ and σ). In other words, whenever we observe a value that translates into a z-score of12

z = 2 (according to the respective null hypothesis), we will obtain the same p-value from13

(the normal approximation to) the binomial test. Since we apply a two-tailed test, an14

observation that is two standard deviations to the left of the expected value (z = −2) will15

also lead to the same p-value.16

Once an observation f has been converted into a z-score z, it is thus easy to decide17

whether H0 can be rejected or not, by comparing |z| with previously established thresholds18

for common significance levels α. For α = .05, the (two-tailed) z-score threshold is 1.96, so19

the rejection criterion is |z| ≥ 1.96; for α = .01 the threshold is |z| ≥ 2.58 and for α = .00120

it is |z| ≥ 3.29. Thus, no matter what the original values of f , π and n are, if in an21

experiment we obtain a z-score of, say, z = 2 (meaning that f is two standard deviations22

away from e), we immediately know that the result is significant at the .05 significance23

level, but not at the .01 level. Statistics textbooks traditionally provide lists of z-score24

thresholds corresponding to various significance levels, although nowadays p-values for25

arbitrary z-scores can quickly be obtained from statistical software packages.26
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5 Two-sample tests1

Until now, we analyzed what is known as a one-sample statistical setting, where our null2

hypothesis concerns a certain quantity (often, the proportion of a certain phenomenon)3

in the set of all relevant units (e.g., all the sentences of English) and we use a sample of4

such units to see if the null hypothesis should be rejected. However, two-sample settings,5

where we have two samples (e.g., two corpora with different characteristics, or two sets6

of sentences of different types) and want to know whether they are significantly different7

with respect to a certain property, are much more common. Coming back to the example8

of passivization in idiomatic vs. non-idiomatic constructions from the introduction, our9

two samples would be sets of idiomatic and non-idiomatic constructions; we would count10

the number of passives in both sets; and we would verify the null hypothesis that there is11

no difference between the proportion of passives in the two samples.12

It is easier to motivate one aspect of hypothesis testing that is often counter-intuitive,13

i.e., the fact that we pick as null hypothesis the “uninteresting” hypothesis that we hope14

to reject, when looking at the two-sample case. First, most linguistic theories, especially15

categorical ones, are more likely to predict that there is some difference between two sets,16

rather than making quantitative predictions about this difference being of a certain size.17

Second, in this way, if we can reject the null hypothesis, we can claim that the hypothesis18

that there is no difference between the groups is not tenable, i.e., that there is a difference19

between the groups, which is what our theory predicts. If, instead, we tested the null20

hypothesis that there is a certain difference between the groups, and we found that this21

hypothesis cannot be rejected, we could only claim that, for now, we have not found22

evidence that would lead us to reject our hypothesis: clearly, a weaker conclusion.23

Probably the majority of questions that are of interest to linguists can be framed24

in terms of a two-sample statistical test: for several examples of applications in syntax,25

see article 45; for an application to the study of collocations, see article 57. Here, we26

discuss the example of the distribution of passives in two broad classes of written English,27

“informative” prose (such as daily press) and “imaginative” prose (such as fiction). One28

plausible a priori hypothesis is that these two macro-genres will differ in passive ratios,29

with a stronger tendency to use passives in informative prose, due to the impersonal, more30

“objective” tone conferred to events by passive voice (for a more serious corpus-based31

account of the distribution of the English passive, including register-based variation, see32

Biber/Johansson/Leech/et al. 1999, Sections 6.4 and 11.3). Our null hypothesis will be33

that there is no difference between the proportion of passives in informative prose π1 and34

imaginative prose π2, i.e., H0 : π1 = π2. Conveniently, the documents in the Brown corpus35

are categorized into informative and imaginative writing – thus, we can draw random36

samples of n1 = 100 sentences from the informative section of the corpus, and n2 = 10037

sentences from the imaginative section. Counting the passives, we find that the informative38

sample contains f1 = 23 passives, whereas the imaginative sample contains f2 = 9 passives.39

Since there is a considerable difference between f1 and f2, we are tempted to reject40

H0. However, before we can do so, we must find out to what extent the difference can41

be explained by random variation, i.e., we have to calculate how likely it is that the two42

samples come from populations with the same proportion of passives, as stated by the43

null hypothesis (statistics textbooks will often phrase the null hypothesis directly as: the44

samples are from the same population). In order to calculate expected frequencies, we45

have to estimate this common value from the available data, using maximum-likelihood46

estimation: π̂ = (f1 + f2)/(n1 + n2) = 32/200 = 16% (we sum the f ’s and n’s because,47

if H0 is right, then we can treat all the data we have as a larger sample from what, for48

our purposes, counts as the same population). Replacing H0 by the more specific null49
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hypothesis H ′
0 : π1 = π2 = 16%, we can compute the expected frequencies under the null1

hypothesis, i.e., e1 = e2 = 100·π̂ = 16 (which are identical in our case since n1 = n2 = 100),2

as well as the binomial sampling distributions.3

In the one-sample case, we looked at the overall probability of f and all other possible4

values that are more extreme than |f − e|. The natural extension to the two-sample case5

would be to look at the overall probability of the pair (f1, f2) and all the other possible pairs6

of values that, taken together, are more extreme than the sum of |f1 − e1| and |f2 − e2|.7

The lower this probability, the more confident we can be that the null hypothesis is false.8

In our case, |f1 − e1| and |f2 − e2| are directly comparable and might be added up in this9

way, since the expected frequencies e1 = e2 = 16 and the sample sizes n1 = n2 = 10010

are the same. However, in many real life situations, we will have to deal with samples of11

(sometimes vastly) different sizes (e.g., if one of the conditions is relatively rare so that12

only few examples can be found).13

Fortunately, we know a solution to this problem from Section 4: z-scores provide14

a measure of extremeness that is comparable between samples of different sizes. We15

thus compute the z-scores z1 = (f1 − e1)/σ1 and z2 = (f2 − e2)/σ2 (with σ1 and σ216

obtained from the estimate π̂ according to H ′
0). For mathematical reasons, the total17

extremeness is computed by adding up the squared z-scores x2 := (z1)2 + (z2)2 instead of18

the absolute values |z1| and |z2|. It should be clear that the larger this value is, the less19

likely the null hypothesis of no difference in population proportions is, and thus we should20

feel more confident in rejecting it. More precisely, the p-value associated with x2 is the21

sum over the probabilities of all outcomes for which the corresponding random variable22

X2 := (Z1)2 + (Z2)2 is at least as large as the observed x2, i.e. Pr(X2 ≥ x2).23

Instead of enumerating all possible pairs of outcomes with this property, we can again24

make use of the normal approximation, which leads to a so-called chi-squared distribution25

with one degree of freedom (df = 1). Using the chi-squared distribution, we can easily26

calculate the p-value corresponding to the observed x2, or compare x2 with known rejection27

thresholds for different significance levels (e.g. x2 ≥ 3.84 for α = .05 or x2 ≥ 6.63 for28

α = .01). This procedure is known as (Pearson’s) chi-squared test (Agresti 1996, Section29

2.4; DeGroot/Schervish 2002, Sections 9.1-4).30

An alternative representation of the observed frequency data that is widely used in
statistics takes the form of a so-called contingency table:

sample 1 sample 2
passives f1 f2

other n1 − f1 n2 − f2

(6)

The cells in the first row give the frequencies of passives in the two samples, while the31

cells in the second row give the frequencies of all other sentence types. Notice that each32

column of the contingency table adds up to the respective sample size, and that π̂ (the33

estimated population proportion under H0 needed to compute expected frequencies) can34

be obtained by summing over the first row and dividing by the overall total. Thus, the35

chi-squared statistic x2 can easily be calculated from such a table (Agresti 1996, Chapter36

2; DeGroot/Schervish 2002, Section 9.3) and most statistical software packages expect37

frequency data for the chi-squared test in this form. Like in the one-sample case, the38

normal approximation is only valid if the sample sizes are sufficiently large. The standard39

rule of thumb for contingency tables is that all expected cell frequencies (under H ′
0) must be40

≥ 5 (Agresti 1996, Section 2.4.1). In the usual situation in which π̂ < 50%, this amounts41

to n1π̂ ≥ 5 and n2π̂ ≥ 5. Statistical software will usually produce a warning when the42

normal approximation is likely to be inaccurate.43
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There is also an exact test for contingency tables, similar to the binomial test in the1

one-sample case. This test is known as Fisher’s exact test (Agresti 1996, Section 2.6). It2

is implemented in most statistical software packages, but it is computationally expensive3

and may be inaccurate for large samples (depending on the specific implementation).4

Therefore, use of Fisher’s test is usually reserved for situations where the samples are too5

small to allow the normal approximations underlying the chi-squared test (as indicated by6

the rule of thumb above).7

In the current example (f1 = 23 and f2 = 9), the contingency table corresponding to
the observed data is

sample 1 sample 2
passives 23 9
other 77 91

(7)

Using a statistical software package, we obtain x2 = 6.29 for this contingency table,8

leading to rejection of H0 at the .05 significance level (but not at the .01 level). The9

approximate p-value computed from x2 is p = 1.22%, while Fisher’s exact test yields10

p = 1.13% (with expected frequencies n1π̂ = n2π̂ = 16 � 5, we anticipated a good11

agreement between the exact and the approximate test). We can thus conclude that there12

is, indeed, a difference between the proportion of passives in informative vs. imaginative13

prose. Moreover, the direction of the difference confirms our conjecture that the proportion14

of passives is higher in informative prose.15

A particular advantage of the contingency table notation is that it allows straight-16

forward generalizations of the two-sample frequency comparison. One extension is the17

comparison of more than two samples representing different conditions (leading to a con-18

tingency table with k > 2 columns). For instance, we might want to compare the frequency19

of passives in samples from the six subtypes of imaginative prose in the Brown corpus (gen-20

eral fiction, mystery, science fiction, etc.). The null hypothesis for such a test is that the21

proportion of passives is the same for all six subtypes, i.e. H0 : π1 = π2 = · · · = π6.22

Another extension leads to contingency tables with m > 2 rows. In our example, we have23

distinguished between passive sentences on one hand and all other types of sentences on24

the other. However, this second group is less homogeneous so that further distinctions may25

be justified, e.g., at least between sentences with intransitive and transitive constructions.26

From such a three-way classification, we would obtain three frequencies f (p), f (i) and f (t)
27

for each sample, which add up to the sample size n. These frequencies can naturally be28

collected in a contingency table with three rows. The null hypothesis would now stipu-29

late that the proportions of passives, intransitive and transitives are the same under both30

conditions (assuming k = 2), viz. π
(p)
1 = π

(p)
2 , π

(i)
1 = π

(i)
2 and π

(t)
1 = π

(t)
2 . In general, an31

x2 value can be calculated for any m × k contingency table in analogy to the 2 × 2 case.32

The p-value corresponding to x2 can be obtained from a chi-squared distribution with33

df = (m − 1)(k − 1) degrees of freedom. If the expected frequency in at least one of the34

cells is less than 5, a version of Fisher’s exact test can be used (this version is considerably35

more expensive than Fisher’s test for 2× 2 tables, though).36

Having established that the proportion of passives is different in informative vs. imagi-37

native prose, we would again like to know how large the effect size is, i.e. by how much the38

proportions π1 and π2 differ. This is particularly important for large samples, where small39

(and hence linguistically irrelevant) effect sizes can easily lead to rejection of H0 (cf. the40

discussion in Section 3). A straightforward and intuitive measure of effect size is the dif-41

ference δ := π1 − π2. When the sample sizes are sufficiently large, normal approximations42

can be used to compute a confidence interval for δ. This procedure is often referred to as43

a proportions test and it is illustrated, for example, by Agresti (1996, Section 2.2). In our44
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example, the 95% confidence interval is δ = 3.0% . . . 25.0%, showing that the proportion1

of passives is at least 3 percentage points higher in informative prose than in imaginative2

prose (with 95% certainty).3

In other situations, especially when π1 and π2 are on different orders of magnitude,4

other measures of effect size, such as the ratio π1/π2 (known as relative risk) may be more5

appropriate. A related measure, the odds ratio θ, figures prominently because an exact6

confidence interval for θ can be obtained from Fisher’s test. Most software packages that7

implement Fisher’s test will also offer calculation of this confidence interval. In many8

linguistic applications (where π1 and π2 are relatively small), θ can simply be interpreted9

as an approximation to the ratio of proportions (relative risk), i.e., θ ≈ π1/π2. On these10

measures see, again, Section 2.2 of Agresti (1996). Effect size in general m×k contingency11

tables is much more difficult to define, and it is most often discussed in the setting of12

so-called generalized linear models (Agresti 1996, Chapter 4).13

Examples of fully worked two-sample analyses based on contingency tables can be14

found in articles 45 and 57. As illustrated by article 45 in particular, contingency tables15

and related two-sample tests can be tuned to a number of linguistic questions by look-16

ing at different kinds of linguistic populations. For example, if we wanted to study the17

distribution of by-phrases in passive sentences containing two classes of verbs (say, verbs18

with an agent vs. experiencer external argument), we could define our two populations19

as all passive sentences with verbs of class 1 and all passive sentences with verbs of class20

2. We would then sample passive sentences of these two types, and count the number of21

by-phrases in them. As a further example, we might be interested in comparing alterna-22

tive morphological and syntactic means to express the same meaning. For example, we23

might be interested, with Rainer (2003), in whether various classes of Italian adjectives24

are more likely to be intensified by the suffix -issimo or by the adverb molto. This leads25

naturally to a contingency table for intensified adjectives with -issimo and molto columns,26

and as many rows as the adjective classes we are considering (or vice versa). The key27

to the successful application of statistical techniques to linguistic problems lies in being28

able to frame interesting linguistic questions in operational terms that lead to meaning-29

ful significance testing. The following section will discuss different ways to perform this30

operationalization.31

6 Linguistic units and populations32

As we just said, from the point of view of linguists interested in analyzing their data33

statistically, the most important issue is how to frame the problem at hand so that it can34

be operationalized in terms suitable for a statistical test. In this section, we introduce35

some concepts that might be useful when thinking of linguistic questions in a statistical36

way.37

In the example used throughout the preceding sections, we have defined the population38

as the set of all (written American) English sentences and considered random samples of39

sentences from this population. However, statistical inference can equally well be based40

on any other linguistic unit, such as words, phrases, paragraphs, documents, etc. This41

unit of measurement if often called a token in corpus linguistics, at least when referring to42

words. Here, we use the term more in general to refer to any unit of interest.43

The population then consists of all the utterances that have ever been produced (or44

could be produced) in the relevant (sub)language, broken down into tokens of the chosen45

type. We might also decide to focus on tokens that satisfy one or more other criteria46

and narrow down the population to include only these tokens. For instance, we might be47
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concerned with the population of words that belong to a specific syntactic category; or1

with sentences that contain a particular verb or construction, etc.2

What we are interested in is the proportion π of tokens (in the population) that have3

a certain additional property: e.g., word tokens that are nouns, verb tokens that belong4

to the inflectional paradigm of to make, sentences in the passive voice, etc. The properties5

used to categorize tokens for this purpose are referred to as types (in contrast to tokens,6

which are the categorized objects).7

Since the full population is inaccessible, our conclusions have to be based on a (random)8

sample of tokens from the population. Such a sample of language data is usually called a9

corpus (or can be derived from a corpus: when we define the population as a set of verb10

tokens, for example, our sample might comprise all instances of verbs found in the corpus).11

The sample size n is the total number of tokens in the sample, and the number of tokens12

that exhibit the property of interest (i.e., that belong to the relevant type) is the observed13

frequency f .14

The same observed frequency can have different interpretations (with respect to the15

corresponding population proportion) depending on the units of measurement chosen as16

tokens, and the related target population. For instance, the number of passives in a17

sample could be seen relative to the number of sentences (π = proportion of sentences18

in the passive voice), relative to the number of verb phrases (π = proportion of passive19

verb phrases), relative to word tokens (π = relative frequency of passive verb phrases per20

1,000 words), relative to all sentences containing transitive verbs (π = relative frequency21

of actual passives among sentences that could in principle be in passive voice). Note that22

each of these interpretations casts a different light on the observed frequency data. It23

is the linguist’s task to decide which interpretation is the most meaningful, and to draw24

conclusions about the linguistic research questions that motivated the corpus study.25

Other examples might include counting the number of deverbal nouns in a sample26

from the population of all nouns in a language; counting the number of words ending in27

a coronal stop in a sample from the population of all words in the language; counting the28

number of sentences with heavy-NP shift in a sample from the population of all sentences29

with a complement that could in principle undergo the process; counting the number30

of texts written in first person in a sample from the population of literary texts in a31

certain language and from a certain period. Related problems can also be framed in terms32

of looking at two samples from distinct populations (cf. Section 5), e.g., counting and33

comparing the number of deverbal nouns in samples from the populations of abstract and34

concrete nouns; counting the number of words ending in a coronal stop in samples from the35

population of all native words in the language and the population of loanwords; counting36

the number of texts written in first person in samples from populations of texts belonging37

to two different literary genres.38

In many cases, frequencies are computed not only for a single property, but for a set39

of mutually exclusive properties, i.e., a classification of the tokens into different types. In40

the two-sample setting this leads naturally to a m × 2 contingency table (with the types41

in the classification as rows, and the two populations we are comparing as columns). Note42

that the classification has to be complete, so that the columns of the table add up to the43

respective sample sizes, which is often achieved by introducing a category labeled “other”44

(the single-property/two-samples cases above correspond to 2× 2 contingency tables with45

an “other” class: e.g., deverbal vs. ”other” nouns compared across the populations of46

abstract vs. concrete nouns).47

As an example of a classification into multiple categories, word tokens might be clas-48

sified into syntactic categories such as noun, verb, adjective, adverb, etc., with an “other”49
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class for minor syntactic categories and problematic tokens. A chi-squared test might then1

be performed to compare the frequencies of these categories in samples from two genres.2

As another example, one might classify sentences according to the semantic class of their3

subject, and then compare the frequency of these semantic classes in samples of the pop-4

ulations of sentences headed by true intransitive vs. unaccusative verbs. It is not always5

obvious which characteristics should be operationalized as a classification of the tokens6

into types, and which should rather be operationalized in terms of different populations7

the tokens belong to. In some cases, it might make more sense to frame the task we just8

discussed in terms of the distribution of verb types across populations of sentences with9

different kinds of subjects, rather than vice versa. This decision, again, will depend on the10

linguistic question we want to answer.11

In corpus linguistics, lexical classifications also play an important role. In this case,12

types are the distinct word forms or lemmas found in a corpus (or sequences of word forms13

or lemmas). Lexical classifications may lead to extremely small proportions π (sometimes14

measured in occurrences per million words) and huge differences between populations in15

the two-sample setting. Article 57 discusses some of the relevant methodologies in the16

context of collocation extraction.17

The examples we just discussed give an idea of the range of linguistic problems that18

can be studied using the simple methods based on count data described in this article.19

Other problems (or the same problems viewed from a different angle) might require other20

techniques, such as those mentioned in the next two sections. For example, our study of21

passives could proceed with a logistic regression (see Section 8), where we look at which22

factors have a significant effect on whether a sentence is in the passive voice or not. In any23

case, it will be fundamental for linguists interested in statistical methods to frame their24

questions in terms of populations, samples, types and tokens.25

7 Non-randomness and the unit of sampling26

So far, we have always made the (often tacit) assumption that the observed data (i.e., the27

corpus) are a random sample of tokens of the relevant kind (e.g., in our running example28

of passives, a sentence) from the population. Most obviously, we have compared a corpus29

study to drawing balls from an urn in Section 2, which allowed us to predict the sampling30

distribution of observed frequencies. However, a realistic corpus will rarely be built by31

sampling individual tokens, but rather as a collection of contiguous stretches of text or32

even entire documents (such as books, newspaper editions, etc.). For example, the Brown33

corpus consists of 2,000-word excerpts from 500 different books (we will refer to these34

excerpts as “texts” in the following). The discrepancy between the unit of measurement35

(a token) and the unit of sampling (which will often contain hundreds or thousands of36

tokens) is particularly obvious for lexical phenomena, where tokens correspond to single37

words. Imagine the cost of building the Brown corpus by sampling a single word each38

from a million different books rather than 2,000 words each from only 500 different books!39

Even in our example, where each token corresponds to an entire sentence, the unit of40

sampling is much larger than the unit of measurement: each text in the Brown contains41

roughly between 50 and 200 sentences. This need not be a problem for the statistical42

analysis, as long as each text is itself a random sample of tokens from the population, or43

at least sufficiently similar to one. However, various factors, such as the personal style of44

an author or minor differences in register or conventions within a particular subdomain,45

may have a systematic influence on how often passives are used in different texts. This46

means that the variability of the frequency of passives between texts may be much larger47
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Figure 5: Comparison of the frequencies of passives in the texts of the Brown corpus
(informative prose only) with the binomial distribution predicted for random samples. In
order to ensure comparability of the frequencies, 50 sentences were sampled from each
Brown text.

than between random samples of the same sizes (where all variation is purely due to chance1

effects).2

Again, the problem is most obvious for lexical frequencies. Many content words (except3

for the most general and frequent ones) will almost only be found in texts that deal with4

suitable topics (think of nouns like football or sushi, or adjectives like coronal). On the5

other hand, such topical words tend to have multiple occurrences in the same text, even if6

these would be extremely unlikely in a random sample (indeed, the “burstiness” of words7

in specific texts is used as strategy to find interesting keywords; see, e.g., Church 2000).8

The increased variability of frequency between the individual texts is attenuated to9

some extent when corpus frequencies are obtained by summing over all the (randomly10

selected) texts in a corpus. However, in most cases the corpus frequencies will still show11

more variation than predicted by the binomial distribution.12

In order to verify empirically whether a linguistic phenomenon such as the frequency of13

passives is subject to such non-randomness, we can compare the distribution of observed14

frequencies across the texts in a corpus with the distribution predicted for random samples15

by the binomial distribution. An example of such a comparison is shown in Figure 5.16

From each Brown text, we have taken a sample of 50 sentences (this subsampling step17

was necessary because the number of sentences per text varies from around 50 to more18

than 200). By tabulating the observed frequencies, we obtain the distribution shown as19

black bars in Figure 5. The gray bars show the binomial distribution that we would20

have obtained for random samples from the full population (the population proportion of21

passives was estimated at π = 27.5%, based on the Brown data). Note that we have used22

only informative prose texts, since we already know from Section 5 that the proportion of23

passives differs considerably between the two major sections of the corpus.24

As the figure shows, the observed amount of variation is larger than the one predicted25

from the binomial distribution: look for example at the proportion of observed and bino-26
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mial samples with X ≤ 7. The standard deviation (which, as discussed in Section 4, is1

a measure of the width of a distribution) is σ = 6.63 for the empirical distribution, but2

only σ = 3.16 for the binomial distribution. The corresponding z-scores, having σ in the3

denominator (see Equation (5) in Section 4), will be smaller for the empirical distribution,4

and thus the results are less significant than they would seem according to the binomial dis-5

tribution. This means that the binomial test will lead to rejection of a true null hypothesis6

more easily than should be the case, given the spread of the actual distribution.7

Suppose that we want to test the null hypothesis H0 : π = 27.5% (which is in fact8

true) based on a sample of n = 50 sentences from the informative prose in the Brown9

corpus. If the observed frequency of passives in this sample is f = 7, we feel confident10

to reject H0 (e = 13.75 leads to a z-score of z = −2.14, above the α = .05 threshold of11

|z| ≥ 1.96). However, if all sentences in this sample came from the same text (rather than12

being sampled randomly from the entire informative prose section), Figure 5 shows that13

the risk of obtaining precisely f = 7 by chance is already around 4%! The “true” z-score14

(based on the standard deviation computed from the observed samples) is only z = −1.02,15

far away from any rejection threshold (in fact, this z-score indicates a risk of more than16

30% that H0 would be wrongly rejected).17

Seeing how non-randomness effects can lead to a drastic misinterpretation of the ob-18

served frequency data, a question arises naturally: How can we make sure that a corpus19

study is not affected by non-randomness? While for many practical purposes it might be20

possible to ignore the issue, the only way to be absolutely sure is to ascertain that the unit21

of sampling coincides with the unit of measurement. When using a pre-compiled corpus22

(as will be the case for most studies in corpus linguistics) or when it would be prohibitively23

difficult and time consuming to sample individual tokens, we have no choice but to adjust24

the unit of measurement. For example, when our data are based on the Brown corpus, the25

unit of sampling – and hence the unit of measurement – would be a text, i.e., a 2,000-word26

excerpt from a coherent document. Of course, we can no longer classify such an excerpt27

as “passive” or “non-passive”. Instead, what we observe for each token is a real-valued28

number: the proportion of passive sentences in the text.29

Unlike previously, where each measurement was essentially a yes/no-decision (“passive”30

or “not passive”) or a m-way classification, measurements are now real-valued numbers31

that can in principle assume any value between 0 and 1 (3/407, 139/211, etc.). Statisticians32

speak of a nominal scale (for yes/no-decisions and classifications) vs. an interval scale (for33

numerical data). In order to analyze such data, we need an entirely different arsenal of34

statistical procedures, such as the well-known t-test. These methods are explained in any35

introductory textbook on statistics, and we give a brief overview of the most important36

terms and techniques in Section 8.37

This approach is only viable for phenomena, such as passive voice, that have a rea-38

sonably large number of occurrences in each text. It would not be sensible to count the39

proportion of occurrences of the collocation strong tea in the Brown texts (or even in a40

corpus made of larger text stretches), since the vast majority of texts would yield a pro-41

portion of 0% (in the Brown corpus, strong tea occurs exactly once, which means that in42

all texts but one the proportion will indeed be 0%).43

Notice that, from a statistical perspective, the issues of representativeness and balance44

sometimes discussed in connection to corpus design (see article 11) involve two aspects: 1)45

How to define the target population precisely (is it possible to delimit a set of utterances46

that constitutes the population of, say, “contemporary English”?), and 2) how to take a47

random sample from the target population (with the complication discussed in this section48

that what might constitute a random sample of, say, documents, will not be a random49
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sample of, say, sentences). See Evert (2006) for an extended discussion of non-randomness1

in corpus linguistics.2

8 Other techniques3

Like for count data, there is a range of statistical tests that can be used to analyze data on4

an interval scale (such as the relative number of sentences containing passives per document5

discussed in the previous section, or reaction times from a psycholinguistic experiment).6

For the one-sample case, in which we want to test whether an observed interval-scale7

quantity (such as the proportion of passive sentences in a text) could plausibly come from8

a population where the same quantity has a certain distribution with a specific mean9

and standard deviation, you can use a (one sample) t-test (comparable to the binomial10

test for count data or, more precisely, the normal approximation based on z-scores). Un-11

surprisingly, when two samples are compared, the appropriate test is a two-sample t-test12

(corresponding to the chi-squared test for count data). However, in order to compare13

more than two samples, rather than performing a series of pairwise t-tests (a procedure14

that would make it much more likely that we obtain a significant result by chance), the15

technique to be applied is the one-way analysis of variance (ANOVA). The ANOVA can16

only tell us whether at least one sample in the set is different from at least one other17

sample, and post-hoc tests must then be performed to identify the sample(s) responsible18

for rejection of H0.19

In some settings, the variables in two samples have a natural pairing. For example, if20

we compare the proportion of passives in English and Spanish texts based on a parallel21

corpus, we should make use of the information that the texts are paired in order to control22

for irrelevant factors that may affect passive proportion (e.g., style and topic of a text),23

which should have a similar effect in an original and its translation. The appropriate test,24

in this case, is the paired t-test.25

In many studies, it makes sense to operationalize the problem as one of assessing the26

association between two properties of the same unit, both measured on an interval scale.27

For example, we might be interested in the issue of whether there is a relation between the28

proportion of passives and, say, that of nominalizations (as both are plausible markers of29

more formal registers). Given a list of pairs specifying the (relative) frequencies of passives30

and nominalizations in each of the texts in our sample, we can perform a correlation31

analysis. In this case, the null hypothesis will be that there is no correlation between the32

two properties; and effect size will be measured in terms of how much of the variability33

of one variable can be explained by linear dependence on the other variable (standard34

correlation analysis will not capture nonlinear relations between variables).35

A significant correlation does not imply a causal relation between two variables (even36

if the numbers of passives and nominalizations turn out to be correlated, it is unlikely that37

passives “cause” nominalization or vice versa). Often, however, we want to go beyond38

the mere observation of a relationship between two variables. If we hypothesize that the39

behavior of a certain variable depends on that of one or more other variables, we will40

want to use statistics to test whether our independent variables predict the values of the41

dependent variable beyond chance level. In this case, we use the technique of (multiple)42

linear regression (which is related to correlation). In linear regression, the independent43

variables can be a mixture of discrete and continuous variables, but the dependent variable44

must be continuous.45

Similar techniques can also be applied to the analysis of the kind of categorical data46

(resulting in a contingency table of frequency counts) that have been the focus of this47
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article. The equivalent of linear regression in this case is logistic regression. For example,1

a logistic regression analysis could try to predict whether a sentence is in passive voice or2

not (a dichotomous dependent variable) in terms of factors such as the semantic class of the3

verb (a categorical variable), the overall entropy of the sentence (a continuous variable),4

etc. A full regression analysis tests significant effects of the independent variables, but5

typically it also checks that the independent variables are not correlated with each other,6

and it might look for the optimal combination of independent variables.7

The cases we listed here (detection of differences and estimation of population values8

in one/two/multiple paired/non-paired sample cases, assessment of association/correlation9

between variables, regression) constitute a nearly exhaustive survey of the analytical set-10

tings considered in inferential statistics. More advanced techniques, rather than introduc-11

ing completely new scenarios, will typically deal with cases in which one or more of the as-12

sumptions of the basic models are not met or the models need to be extended. For example,13

more sophisticated ANOVA models can take multiple categorizations of the data and their14

interactions into account (akin to the analysis of m× k contingency tables with m and/or15

k greater than 2). Advanced regression techniques can detect non-linear relations between16

the dependent and independent variables. So-called “distribution-free” tests make no as-17

sumption about the distribution of the underlying population(s) nor about the sampling18

distribution (these are typically referred to as non-parametric methods). Simulation-based19

methods (Monte Carlo methods, the Bootstrap) provide an alternative to analytical esti-20

mation of various parameters. A wealth of exploratory and visual methods are available21

to evaluate the validity of assumptions and the quality of the resulting models. Bayesian22

inference, a very important branch of statistics, allows, among other things, to distin-23

guish between “more plausible” and “less plausible” estimates within a confidence interval24

(the classic binomial confidence interval described in Section 3 indicates a range of plausi-25

ble values for the population proportion, but it does not distinguish among these values,26

whereas, intuitively, we would consider the MLE proportion much more plausible than,27

say, the values at the edges of the confidence interval).28

Some important kinds of corpus data, such as distributions of word types, are charac-29

terized by the presence of a very large number of very rare types (words that occur only30

once or never at all in the corpus at hand) and few extremely frequent types (function31

words). These extremely skewed distributions make the application of standard statistical32

models to certain tasks problematic (mainly, estimating the number of word types in a33

population as well as related quantities), and demand specialized statistical tools. For a34

general survey of the problems involved, see article 39 and the references on statistical35

modeling of word frequency distributions recommended there.36

Almost every elementary statistics textbook (including those listed in the next sec-37

tion) will introduce t-tests, ANOVA, correlation and regression. Advanced techniques are38

nowadays within easy reach of non-statisticians thanks to their implementation in user-39

friendly software packages. Here, we would like to stress once more that, for all of the40

large variety of available procedures and their complications, the basic logic of hypothesis41

testing and estimation is essentially the same that we illustrated with very simple exam-42

ples of frequency count data in the first sections of this article. It is not essential to know43

mathematical details of all the techniques in order to apply them, but it is important44

to understand the basic principles of hypothesis testing and estimation; the assumptions45

of a test, its null hypothesis, and the meaning of a p-value; and to make sure that the46

assumptions are met by the data and that the research question can be translated into a47

meaningful null hypothesis. And, of course, the linguistic interpretation of the statistical48

results is at least as crucial as the correctness of the methods applied.49
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We have focused here on statistical inference for hypothesis testing and estimation, as1

applied to corpus data. This is only a part, albeit a fundamental one, of the role that2

statistical methods play in corpus-related disciplines today. For a survey of statistical3

procedures used for exploratory purposes (i.e., as an aid in uncovering interesting patterns4

in the data), see articles 40 and 42. Statistical methods also play a very important role5

as modeling tools for machine learning techniques applied to natural language (article 41)6

and more generally in so-called empirical natural language processing (see, e.g., article7

50 on machine translation, and Manning/Schütze 1999 for an introduction to statistical8

NLP).9

9 Directions for further study10

A much more in-depth introduction to the statistical inference methods appropriate for11

count data that we discussed here is provided by Agresti (1996) or, at a more technical12

level, Agresti (2002). There is, of course, a vast number of introductory general statistics13

books. DeGroot/Schervish (2002) present a particularly thorough and clear introduc-14

tion, although it requires at least a basic mathematical background. Among the less15

technical introductions, we recommend the one by Hays (1994), a book that provides16

non-mathematical but rigorous explanations of the most important notions of statistical17

inference (although it focuses on the statistical methods for the analysis of experimental18

results, which are only partially relevant to corpus work). There is also a wealth of statis-19

tics “cookbooks” that illustrate when to apply a certain technique, how to apply it, and20

how to interpret the results. These are often and usefully linked to a specific statistical21

software package. For example, Dalgaard (2002) is an introduction to running various22

standard statistical procedures in R (see below).23

There are a few older introductions to statistics explicitly geared towards linguists.24

The one by Woods/Fletcher/Hughes (1986) is a classic, whereas the one by Butler (1985)25

has the advantage of being now freely available on the Web:26

http://www.uwe.ac.uk/hlss/llas/statistics-in-linguistics/bkindex.shtml27

Older introductions tend to focus on techniques that are more relevant to psycholin-28

guistics, phonetics and language testing than to corpus analysis. Oakes (1998) presents a29

survey of applications of statistics in corpus studies that trades depth for wider breadth30

of surveyed applications and methods. It is likely that, with the growing interest in cor-31

pora and statistical approaches to linguistics in general, the next few years will see the32

appearance of more statistics textbooks targeting corpus linguists.33

There is nowadays a large number of statistical software packages to choose from. We34

recommend R:35

http://www.r-project.org/36

R supports an impressive range of statistical procedures and, being open-source and37

available free of charge, it is attracting a growing community of developers who add new38

functionalities, including some that are of interest to corpus linguists. These extensions39

range from advanced data visualization techniques to modules explicitly targeting corpus40

work, such as the corpora library developed by the authors of this article:41

http://purl.org/stefan.evert/SIGIL42
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The corpora library (also free and open-source) provides support for carrying out the1

statistical analyses described in this article (the Web site has a tutorial that shows how to2

run them), as well as several sample data sets. There is an increasing number of introduc-3

tory textbooks with concrete R examples, and we know of several R-based books focusing4

on statistical methods in linguistics that are currently in preparation. Shravan Vasishth5

has written (and is constantly updating) an online book aimed at (psycho-)linguists that6

introduces statistics in R through a simulation approach. This book is freely available7

(under a Creative Commons license) from:8

http://www.ling.uni-potsdam.de/~vasishth/SFLS.html9

Finally, Wulff (2005) provides a survey of online statistics facilities.10
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