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Abstract

The FIASCO system implements a machine-learning approach for the automatic removal of boilerplate
(navigation bars, link lists, page headers and footers, etc.) from Web pages in order to make them
available as a clean and useful corpus for linguistic purposes. The system parses an HTML document
into a DOM tree representation and identifies a set of disjoint subtrees that correspond to text blocks,
headers or list items. Each block is then represented as a vector of linguistic, structural and visual
features. A support vector machine classifier is used to distinguish between “clean” and “dirty” blocks.
Dirty blocks are removed from the HTML tree before it is passed to the Lynx browser for conversion
into plain text. The SVM classifier was trained and evaluated on a manually cleaned dataset of 158
English Web pages, the FIASCO gold standard.
Keywords : CLEANEVAL, Web as corpus, boilerplate, machine learning, support vector machines.

1. Introduction
The World Wide Web offers a unique possibility to gather large amounts of authentic and
up-to-date language data from a wide variety of genres, and to build corpora containing
billions of words of text with relatively little effort. 1 Such gigaword corpora are essential
for studying lexical phenomena (such as collocations, or a lexicographic analysis of
word meaning), and they have been shown to improve statistical NLP models drastically.
If trained on huge amounts of data, even simple algorithms can produce high-quality
results that outclass more sophisticated algorithms based on small training sets (Banko
& Brill 2001).

There is one drawback, though: many of the Web pages collected by a crawler will
be automatically generated pages, Web spam or duplicates of other pages. Accepting
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1 From our experience working on this project, it appears to us that the effort involved in building a
Web corpus has persistently been underestimated . . .
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such pages into a Web corpus would distort frequency counts in a way that no statis-
tical model can account for. Fortunately, algorithms for filtering out such pages have
been developed by the search engine and text mining communities, and can readily be
applied. Even if the filters are effective, the remaining “good” pages will still contain
a considerable amount of unwanted text. Navigation bars, link lists, banners, the head-
ers and footers of page templates, disclaimers, copyright notices and, of course, the
ubiquitous advertisements (collectively referred to as boilerplate) consist of canned or
automatically generated text that should not be part of a linguistic corpus.

Although virtually every Web page contains some boilerplate text, sometimes amount-
ing to more than half of the page content, there are no well-established algorithms for
boilerplate removal and Web corpus builders have to rely on simple heuristic tools such
as the PotaModule. 2 This paper describes our supervised learning approach to cleaning
up Web pages, codenamed FIASCO, which has been developed for participation in the
CLEANEVAL contest.

2. System architecture

Figure 1. Training phase (top panel) and cleaning phase (bottom panel) of FIASCO.

Like all supervised learning approaches, FIASCO operates in two stages. In the first
stage, a classifier is trained to discriminate between dirty (i.e., boilerplate) and clean
subtrees in the DOM parse tree of an HTML file (Fig. 1, top panel). Sec. 2.3. describes
this process in detail. In the second stage, the classifier is applied to the relevant subtrees

2 http://sslmitdev-online.sslmit.unibo.it/wac/post_processing.php
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of an unseen Web page (Fig. 1, bottom panel). Subtrees that are classified as dirty
are removed from the parse tree. A description of this cleaning process is given in
Sec. 2.4. In a final post-processing step, which is described in Sec. 2.5., the cleaned
page is rendered as plain text. Notice that the HTML pages require some pre-processing
in both stages, which is described in Sec. 2.1.

2.1. Preprocessing

HTML source files “in the wild” mostly do not correspond to the official W3C standard
(Raggett et al. 1999) and, consequently, very robust parsers are needed to handle them.
In both stages, i.e. training and classification, all HTML pages are therefore parsed and
converted to valid XHTML using the open source parser TagSoup (Cowen 2004) – a
SAX parser written in Java and designed to process even extremely malformed HTML
sources. The XHTML files are also converted to UTF-8 encoding, if necessary. In
addition, some rule based cleanup is done during preprocessing, viz. inline Javascript
(marked with the <script> tag), style information and HTML comments are removed.
Finally, in many web pages paragraphs are not contained in <p> elements but rather
delimited by line breaks, marked with empty <br/> tags. These are replaced with proper
paragraph elements in order to help our system find suitable text blocks for classification.

2.2. Identifying relevant subtrees

Our system is designed to distinguish between clean and dirty text on the basis of “text
block”-like elements of a Web page. While it is relatively easy for humans to identify
such elements in a rendered version of the page, i.e. the page as displayed in a Web
browser, determining the precise parts of the original HTML document that correspond
to such blocks is a non-trivial task. Using an in-memory DOM tree representation of the
HTML document, the identification of text blocks amounts to finding subtrees with cer-
tain characteristics. The root node of such a subtree is called a target node and represents
the automatically recognized text block in further processing. Unfortunately there is no
one-to-one correspondence between certain types of HTML tags or elements and text
blocks in the visual output. For example, the tags <div>, <p>, and <td> can all be used
to create a visually separated block, but they can also be used for many other purposes.

After some manual experimentation, we decided on the following heuristic for identi-
fying text blocks: a node in the DOM tree was accepted as a target node if 10% of its
textual content (the concatentation of all text nodes in the subtree below the node) were
contained in text nodes among its immediate children. This heuristic works reasonably
well for detecting text elements at a paragraph-like granularity, giving an acceptable
approximation to visually separated text blocks for our purposes.

2.3. Training

The supervised training of the FIASCO model consists of two stages: First, feature
vectors (containing the features described in Sec. 3.) are created for each target node
in the training corpus, yielding a set of labelled, real-valued vectors. The values of
each feature (across all training instances) are then scaled linearly to the interval [−1,1].
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Second, the training vectors are passed to LIBSVM (Chang & Lin 2001) to build a
support vector machine (SVM) model (Schölkopf & Smola 2002). The optimal model
parameters were determined using cross-validation (as described in Sec. 4.1.).

2.4. Cleaning Web pages

Given a a raw HTML page to be cleaned, our system first pre-processes the page and
identifies target nodes as described above. Afterwards, feature values for each target
node are extracted and scaled (using the scaling factors determined during training) and
then passed to the SVM model for prediction. The model returns the predicted class
(either clean or dirty) of the node. All subtrees rooted in dirty nodes are pruned from
the tree representation. The tree is then re-transformed into an HTML document and
written to a file for further processing (cf. Sec. 2.5.).

2.5. Post-processing of cleaned Web pages

For the CLEANEVAL contest, output in the form of plain text files with text segments
marked as <p> (paragraph), <h> (heading), or <l> (list item). Because no distinction
is made between these different types of text blocks during the cleaning process, they
had to be determined by the post-processing procedure. Automatically identified text
blocks (cf. Sec. 2.2.) form the basic text segments. A simple heuristic is then used to
determine segment type: If a node corresponds to (or is contained in) an HTML element
that matches one of the paragraph types (<p> for plain paragraphs, <li> for list items,
and <h1>, <h2>, <h3>, <h4> for headings) it is marked accordingly, otherwise it is marked
as <p>. Further refinements are made after the document has been converted to plain text
with the help of the Lynx text-mode browser.

3. Features
We implemented a small Python framework for extracting feature vectors from Web
pages that have previously been converted to XHTML format. These features form the
basic training set for the machine-learning classifier. For every target node indentified in
the XHTML file, a number of features was extracted, then the feature values were scaled
and converted to the data format required by LIBSVM. The features can be grouped into
linguistic (Sec. 3.1.) and structural (Sec. 3.2.) features. Furthermore, we pursued a rad-
ically different approach based on visual features of the rendered Web pages (Sec. 3.3.).

3.1. Linguistic features

Linguistic features were extracted either from the text nodes immediately dominated by
a target node, or from all text nodes in the complete subtree rooted in this node. Our
framework implements the following features: (i) total length of text in the subtree; (ii)
number of word tokens and word types; (iii) number of sentences and average sentence
length; (iv) frequency of certain keywords indicative of clean and dirty text; 3 and (v)

3 A keyword has to be significantly more frequent in one part of the training corpus (either clean
or dirty) than in the other. In addition, keywords are required to be substantially more frequent than
in general language, estimated by frequency counts on the British National Corpus (Aston & Burnard
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statistics on the distribution of part-of-speech tags. 4

The selection of features placed emphasis on being able to classify both nodes with
short texts and nodes containing long text passages correctly. Thus, features such as the
total length of the dominated text or the number of sentences immediately below the
node allow the classifier to recognize long text blocks with “average-length” sentences,
which would typically not contain boilerplate. On the other hand, the keyword-based
features and the proportion of special symbols are intended to distinguish between short
clean and short dirty text blocks.

3.2. Structural features

Structural features mainly provide information about tag or attribute densities in the
subtree dominated by a target node. The intuition behind most of the structural features
was that dirty text is likely to contain large numbers of images or external URLs, while
clean nodes are often contained in paragraph, heading, or list elements. Some examples
of structural features are: (i) depth of the target node within the DOM tree; (ii) whether
target node is marked as a heading; (iii) whether target node is a <p> element; and (iv)
the proportion of <a>, <href> and <img> tags below the target node.

3.3. Visual features

The function of textual components of a Web page cannot always be predicted by analyz-
ing the HTML source code. In some cases, function follows form: The visual rendering
of a Web page may reveal formatting subtleties that provide information about the pur-
pose and function of its building blocks. Such information is not accessible to a purely
structure-based or linguistic analysis. Since maps of local features – such as luminance,
color contrast and texture contrast (Schumann 2006) – turned out not to provide much
information about the function of text blocks, we decided to focus on the geometric
properties of page regions corresponding to text blocks.

In order to recognize page regions corresponding to the target nodes identified by the
FIASCO system (cf. Sec. 2.2.), we extended the Firefox rendering engine with an add-
on that changes attributes of specially marked text elements in the DOM tree in such a
way that they are displayed as bright purple blocks. Visual features were then extracted
from the corresponding regions of a normally rendered version of the page, and fed back
into FIASCO as a table mapping target nodes to feature vectors.

1998). Sets of keywords were automatically extracted from the text version of our gold standard after
tokenization with the TreeTagger tokenizer (Schmid 1994). They were ranked by keyness, a conservative
estimate for the log odds ratio between their relative frequencies in clean and dirty text, and the highest-
ranking keywords were used in the FIASCO system.

4 The textual content of the subtree below each target node was extracted and tagged with Tree Tagger
(Schmid 1994), using the standard English parameter file provided with the system. Afterwards, the
proportions of closed class words, open class words, and unknown words (word forms not listed in the
tagger lexicon) were computed for each target node. The intuition behind these features is that a higher
proportion of unknown words as well as the absence of closed class words are strong indicators that the
text belongs to a dirty node. Similarly, a high concentration of “special symbols” (words tagged SYM,
various types of punctuation, as well as foreign words tagged FW) within a node is often characteristic of
boilerplate, i.e. dirty text.
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Figure 2. Sample from a Web page. Page regions considered by the algorithm for visual
feature extraction are marked with blue lines.

Region Solidity I Solidity II Solidity III Relative Width Headline
I 0.71 1.35 0.12 0.53 0.00
II 0.88 1.30 0.09 0.60 0.00
III 0.97 0.00 0.61 1.00 0.51
IV 0.99 0.00 0.61 1.00 0.00

Table 1. Feature values for regions highlighted in Fig. 2.

We made the following assumptions about characteristic properties of regions containing
clean text: [A] Informative running text in the main body of a Web page occupies a
major portion of the screen, i.e. the text regions are relatively wide. In contrast, text
regions belonging to uninformative boilerplate and advertisements are usually confined
to narrow columns or rows at the edges of the page. [B] Running text shows a relatively
uniform distribution of line widths, in constrast to list items. Only the last line of each
paragraph may deviate considerably from the average width of the entire text block. [C]
Headings are clearly separated text regions that are only large enough to hold a single
line of text (possibly in a very large font).

In order to determine geometric properties of text regions, the page image is convolved
with a mean filter or a Gaussian kernel of appropriate size. This causes lines that are
close to one another to coalesce into a single connected blob, while text blocks separated
by blank lines remain separated. From these blobs, we calculated the five measures
below to quantify our intuitions on the properties of informative running text. Most of
the processing was done with Intel’s Open Computer Vision library (Bradski 2000).

Solidity I: The polygon enclosing a region of running text is compact, i.e. very simi-
lar to a rectangle. Therefore, the ratio between the area of the enclosing polygon and
the area of the minimal bounding rectangle (MBR) should be close to one for running
text. Solidity II: A similar measure is defined by the number of vertices of the enclosing
polygon, divided by the region’s height in line units. Solidity III: More specific than
Solidity I, this measure only computes the average distance of polygon vertices to the
center of the MBR along the x-axis. Relative Width: Since running text is exptected to
occur in relatively wide columns, this measure compares the width of the current region
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of interest to the widest region on the Web page. Headline: A headline should not be
much higher than the average headline height. Therefore, the relative difference between
a region’s height and the average headline height was used as an additional feature.

Table 1 lists the feature values calculated for the four regions of interest highlighted
in the Web page excerpt shown in Fig. 2. Amongst the solidity measures, II and III
most clearly discriminate between running body text (regions III, IV) and boilerplate
(regions I and II). Relative width is useful for distinguishing blocks of running text from
list items. Combining these two measures with the headline feature allows for a clear
separation of running body text, headlines, and itemized or enumerated lists.

4. Supervised training of the classifier
4.1. SVM parameter optimisation

We used the parameter optimization tool included in the standard LIBSVM distribution,
which performs a grid search for optimal parameter values C and γ of the radial basis
function (RBF) kernel. The accuracy on a subset of our gold standard was determined
by 3-fold cross-validation for each set of parameters. Starting from 84.5%, the highest
accuracy of 89.1% was achieved for parameter values C = 32 and γ = 8, after testing
around 110 different combinations of parameter values.

Systematic parameter tuning was also performed for other kernels (linear, polynomial
and sigmoid), using the same optimization procedure. The best result was achieved by
the polynomial kernel (87.5% accuracy), but remains below the accuracy of the RBF
kernel. For comparison, a decision tree classifier 5 was applied to the same data set.
However, classification accuracy was rather poor. Even with additional bagging and
boosting, accuracy only reached 80%, indicating that SVM are indeed the most suitable
type of classifier for this task.

4.2. Evaluation of the classifier

In order to evaluate the overall classification accuracy that can be achieved with the
features we implemented, as well as the performance of different subsets of features,
we trained SVM classifiers using an RBF Kernel (with the optimal parameter settings
γ = 8.0 and C = 32.0 determined in Sec. 4.1.). The results of a 10-fold cross-validation
are shown in Table 2. 6 In addition to overall accuracy, precision and recall for the
identification of clean target nodes are shown in the table. For the goal of building a high-
quality Web corpus (rather than obtaining complete data from every Web page), these
may be the most relevant evaluation metrics. While the part-of-speech features perform
quite well on their own, they have an adverse effect on the overall result when used in
conjunction with all other features. Visual features on the other hand improve the overall
result, while performing worse than part-of-speech features when tested separately.

5 http://www.cs.utah.edu/~hal/FastDT/index.html
6 Unfortunately, the Solidity III feature was broken in the version of our program submitted to the

CLEANEVAL and evaluated here. When this bug was fixed, the visual features achieved a 84% classifi-
cation accuracy (precision 0.68, recall 0.85, F-measure 0.75).
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Features Accuracy Precision Recall F-Measure
All 91.13% 0.90 0.80 0.85
All\{POS} 92.50% 0.90 0.86 0.88
All\{visual} 90.01% 0.87 0.80 0.83
All\{POS, visual} 90.17% 0.86 0.82 0.84
Visual only 79.50% 0.76 0.51 0.61
POS only 83.67% 0.80 0.63 0.71
Only POS and Visual 86.69% 0.82 0.74 0.78

Table 2. Model performance using different feature subsets.

5. Gathering training data
For training the FIASCO classifier, a substantial amount of hand-annotated data are
needed. The development data set provided by the CLEANEVAL organizers contained
only 59 English and 51 Chinese pages, and the manually cleaned versions of these pages
showed some inconsistencies and problems with the annotation guidelines. We there-
fore downloaded over 300 Web pages using Google queries with random combinations
of seed terms from different domains. We manually preselected 158 pages, which con-
tained at least one paragraph of human-readable running text. For each page, we created
a text dump using the text-based Web browser Lynx. The pages were then manually
cleaned by two human annotators, who also marked paragraphs, list items and headings
using single <p>, <l> or <h> tags, respectively. Cleanup and annotation were based on
a refined version of the official CLEANEVAL guidelines, and annotators were provided
with a graphical tool in order to facilitate the task. Minimal edit distance between the
two annotations for each page was computed, showing an average agreement of 91.75%.
The two versions of each text were manually merged by a third annotator for the final
version of our gold standard.

5.1. Alignment to HTML target nodes

Unfortunately, we made the mistake of using the same annotation strategy as the official
CLEANEVAL data set. This meant that all internal structural information of the HTML
document was lost in the manual cleanup process (since the cleanup started from text
dumps of the pages) and the gold standard was therefore not directly usable as training
data for our machine-learning algorithm. In order to identify sets of clean and dirty
target nodes, the paragraphs of the manually cleaned plain text files had to be aligned
to subtrees of nodes in the HTML document, by calculating Dice coefficients for the
word overlap between each paragraph and the textual content of each HTML subtree. If
this process found a HTML subtree that was sufficiently similar to a clean paragraph, its
root node was marked as clean. The information was then propagated up and down the
tree to previously selected target nodes (see Sec. 2.2.): Target nodes contained in a clean
subtree as well as those dominating more clean than non-clean nodes were marked as
clean. All remaining target nodes were marked as dirty, and the two sets of target nodes
were then passed on to the feature extraction process.

The accuracy that can be achieved by our machine-learning approach crucially depends
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Features Accuracy Precision Recall F-Measure
All 95.66 0.97 0.92 0.95
All\{POS} 95.76 0.95 0.94 0.95
All\{visual} 94.13 0.94 0.91 0.93
All\{POS, visual} 93.13 0.93 0.90 0.91
Visual only 79.91 0.83 0.64 0.72
POS only 82.42 0.85 0.69 0.76
Only POS and Visual 88.81 0.90 0.82 0.86

Table 3. Performance of classifier trained on gold standard files for which the automatic
alignment algorithm worked well.

on the quality of the target node identification and their alignment with the gold standard
(cf. Fig. 1). Therefore, we undertook a small-scale manual evaluation of these stages. In
our gold standard, we found 8 files where only 1 to 4 target nodes had been marked in the
DOM tree, compared to 17 up to 127 segments in the corresponding manually cleand
text file. It is obvious that no sensible alignment can be achieved for these files. Of
the remaining 150 gold standard files, a third aligned all text segments in the manually
cleaned version to nodes in the XHTML file (leading to correctly identified clean target
nodes). Another third achieved relatively good alignment rates over 80%, while the final
third had poor alignment quality and may not be usable at all.

In order to test the influence of alignment quality, we repeated the evaluation of Sec. 4.2.,
using only the 117 best-aligned files. All other parameters were exactly the same, i.e. we
used a RBF Kernel with γ = 8.0 and C = 32.0. The results of a 10-fold cross-validation
in Table 3 show a marked improvement in overall accuracy, confirming our hypothesis
that good alignment is crucial for the FIASCO system. Interestingly, the POS features
no longer seem to have the detrimental effect that was observed in the first evaluation.

6. Evaluation of the FIASCO
We evaluated the overall performance of our system by comparison with the manually
cleaned gold standard (see Sec. 5.). Precision, recall and F-score were calculated at word
level, using a fast Python implementation (Evert 2007) based on the difflib package.
The evaluation was carried out by 5-fold cross-validation, i.e. we split our 158 gold
standard files randomly into five sets, using one of them as a test set in each fold to
evaluate a classifier trained on the remaining four sets. We used all features described in
Sec. 3. and the optimal parameter settings for the SVM classifier determined in 4.1. The
mean precision over all folds was 87.63%, with a recall of only 51.87%, yielding an
F-score of 65.16%. While this F-Score falls far below the baseline of 85.32% (given by
plain Lynx text dumps, without any cleanup), we have been able to improve precision
considerably from its baseline of 79.00%.

While we are pleased with the high precision achieved by FIASCO (which means that
only a small amount of “dirty” text is left in the automatically cleaned pages), the sur-
prisingly low recall merits further investigation. We found that it was caused by a small
number of pages with recall below 1%. Manual inspection of these pages revealed that
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most of them were either empty after the pre-processing step (see Sec. 2.1.), or only a
single target node had been identified by our system, typically encompassing the entire
<body> element. Unsurprisingly, this node was then classified as dirty. If such pages are
discarded, average recall increases to 68.94% with a precision of 87.05%, corresponding
to an F-score of 76.44%. Although the F-score is still below the baseline, these results
show a reasonable trade-off between precision and recall that seems warranted in the
context of Web corpora.

7. Conclusion
Our experiments with the FIASCO system have shown that a supervised machine learn-
ing approach to the problem of boilerplate removal is feasible, and that high classifica-
tion accuracy for “clean” and “dirty” text blocks can be achieved. The weakest points
of our approach are the automatic identification of “target nodes” in the HTML tree cor-
responding to text blocks or paragraphs, and the alignment between these target nodes
and manually cleaned text in the gold standard.

While the overall evaluation results show an F-score well below the baseline given by
plain text dumps of the HTML pages, high precision can be achieved (> 87% compared
to a baseline of 79%). In the context of Web corpora, which are often aimed at an
opportunistic collection of large amounts of text, a boilerplate removal strategy with
high-precision seems to be justified, even if recall is fairly low.

One problem of supervised techniques is that they are not language-independent in the
sense that an expensive, manually annotated training corpus is needed for every language
to which they are applied. A version of our classifier using only visual and structural
features of Web pages may have the potential to overcome these restrictions and has
been applied to the Chinese evaluation set in the CLEANEVAL contest.
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