

The NITE Object Model Library for Handling Structured Linguistic
Annotation on Multimodal Data Sets

Jean Carletta, Jonathan Kilgour,
and Tim O’Donnell
School of Informatics

University of Edinburgh
J.Carletta@ed.ac.uk
jonathan@inf.ed.ac.uk
timo@inf.ed.ac.uk

Stefan Evert and Holger Voormann
Institut für Maschinelle Sprachverarbeitung

Universität Stuttgart
evert@IMS.Uni-Stuttgart.DE

voormann@IMS.Uni-Stuttgart.DE

Abstract

The NITE Object Model Library is an
implemented set of routines for loading,
accessing, manipulating, and serializing
linguistic data. It is similar in spirit to the
data handling provided by the Annotation
Graph Toolkit, but is aimed at data that is
heavily cross-annotated with structured
information, and thus chooses higher
expressivity at the cost of processing
speed. We describe our open-source
implementation and the XML-based data
storage format that it assumes, and
discuss the circumstances under which it
is a useful addition to previous data
handling techniques.

1 Introduction

Linguistic corpora are central to natural language
processing, especially given the current
predominance of statistical methods.
Increasingly, because of the growing interest in
multimodal interfaces, corpora include
interactions (either human-human or human-
computer) where all modalities are captured, with
multiple, synchronized audio and video
recordings and interface traces. Understanding
human communication requires all of the
modalities to be considered together, since

gesture, speech, body movement, and so on
combine to produce the message. Although
historically computational linguists have usually
restricted themselves to one or two kinds of
annotation — syntax, say, or dialogue acts —
they now require mechanisms by which they can
add many different kinds of annotation to the
same basic data and relate them together.

The NITE Project (http://www.nis.sdu.dk) is
funded by the European Commission to provide
infrastructural technology for working with
heavily cross-annotated multimodal data sets.
Among other efforts, we have characterized the
types of structures inherent in the annotations
needed to study multimodal interaction, defined a
model of the building blocks and relationships
among them needed to represent these structures,
and constructed a library of routines for reading,
accessing, manipulating, and serializing linguistic
data according to the chosen model. This effort
shares much in common with both the
Annotation Graph Toolkit (Ma, Lee, Bird, &
Maeda, 2002) and with ATLAS (Laprun, Fiscus,
Garofolo, & Pajot, 2002). However, in keeping
with the aim of supporting work with heavily
cross-annotated data sets, our model allows
easier access to rich structural information about
the data than these other systems.

2 What sort of model?

This work is motivated by the sorts of data
modelling concerns that are raised by having

many kinds of annotation, for linguistic levels
ranging from phonology to pragmatics, on the
same basic speech or language material. There
are two reasons why such cross-annotation is
prevalent. First, corpora are expensive to collect
even without annotating them; projects tend to
reuse collected materials where they can.
Second, with the advent of statistical methods in
language engineering, corpus builders are
interested in having the widest possible range of
features to train upon. Understanding how the
annotations relate is essential to developing better
modelling techniques for our systems. The
HCRC Map Task (Anderson et al., 1991) is one
example of a corpus that has been prepared to
answer these questions, with annotations
(http://www.hcrc.ed.ac.uk/maptask) that range

from orthography and syntax to reference and
dialogue structure.

Although how annotations relate to time on
signal is important in corpus annotation, it is not
the only concern. Some entities that must be
modelled are timeless (dictionaries of lexical
entries or prosodic tones, universal entities that
are targets of referring expressions). Others
(sentences, chains of reference) are essentially
structures built on top of other annotations (in
these cases, the words that make up an
orthographic transcription) and may or may not
have an implicit timing, but if they do, derive
their timings from the annotations on which they
are based. Tree structures are common in
describing a coherent sets of tags, but where
several distinct types of annotation are present on

Figure 1: An example of linguistic annotation for a short monologue exhibiting timing information,
structural dominance requiring timing inheritance, relationships without timing implications, and a data type
ontology.

the same material (syntax, discourse structure),
the entire set may well not fit into a single tree.
This is because different trees can draw on
different leaves (gestural units, words) and
because even where they share the same leaves,
they can draw on them in different and
overlapping ways (e.g.,disfluency structure and
syntax in relation to words). As well as the data
itself being structured, data types may also
exhibit structure (for instance, in a typology of
gesture that provides more refined distinctions
about the meaning of a gesture that can be drawn
upon as needed). Figure 1 gives a toy example
that is engineered to show this full range of data
relationships.

3 The NITE Object Model

It is clear from our requirements that although
there are certain general properties to which sets
of linguistic annotations adhere, data set
designers need the freedom to specify the exact
structure required for any particular data set.
Because of this, we specify data handling in
terms of an object model that defines the building
blocks that together make up an annotation set.
This is the same approach that is taken, for
instance, in XML processing for the Document
Object Model (DOM) that defines a tree-
structured document structure in terms of a set of
nodes, where pairs of nodes can be related to
each other by structural dominance.

3.1 The graph structure

The NITE Object Model consists of a general
graph structure, and then some properties
imposed on top of that graph structure that make
using that structure more computationally
tractable whilst still expressing the sorts of
relationships that are prevalent among
annotations.

The NITE Object Model is a graph where the
nodes are required to have a simple type and may
additionally have attribute-value pairs elaborating
on the simple type, timings, children that are
structurally dominated, and relations that fulfill a
named role. These nodes are called elements.

The simple type is a string.
An attribute is identified by a simple label

string and takes a value that conforms to one of
three types: a string, a number, or an

enumeration. The simple type of the element
determines what attributes it can contain. For
any element, the simple type plus the attribute-
value pairs defined for the element represent its
type.

Timing information can be present, and is
represented by reserved start and end attributes
containing numbers that represent offsets from
the start of the synchronized signals.

The children are represented by an (ordered)
list of other elements.

The features are represented by a list of role
and filler pairs. A role is a simple label string
that has an expected arity, or number of elements
expected to fill the role: one, or one-or-more.

3.2 Additional properties

The object model also imposes some
properties on this general graph structure to do
with orderings. Firstly, this graph must be
acyclic so that its transitive closure can be
interpreted as a dominance relation. Secondly,
there must not be more than one path between
any two elements. Because of these constraints,
the parent-child graph (which, unlike a tree,
allows children to have multiple parents)
decomposes into a collection of intersecting tree-
like structures, called hierarchies. Each hierarchy
has its own sequential ordering (similar to an
ordered tree), but these orderings must be
consistent where hierarchies intersect.

If an element has timing information, the
element's start time must be less than or equal to
its end time. In addition, if elements in a
dominance relation both have timing information,
the time interval associated with the ancestor
must include that of the descendant. The times of
elements need not be consistent with any of the
sequential orderings. Timing information can
thus be used to define an additional partial
ordering called temporal precedence, which is
not restricted to a single hierarchy.

Note that featural relations are exempt from
any structural or timing constraints. They are
useful for providing generalized attributes that
are filled by elements instead of strings and for
defining additional arbitrary graph structures
overlaying the main parent-child graph.

It is only possible in a paper of this length to
provide an informal gloss of the NITE Object

Model. The model is formally defined in (Evert
et al., 2002).

4 The NITE Data Set Model

Our object model is simply an abstract graph
structure with a number of properties enforced on
it that govern orderings. However, it can be
difficult for data set designers to think of their
data in terms this abstract, rather than the more
usual concepts such as corpus, signal, and
annotation. In addition, for practical reasons it
can be useful to require data represented in such
a model not to contain cycles, at least in the child
relationships. For this reason, we provide a data
set model in these familiar terms that can easily
be expressed using our object model and from
whose structure the essential properties we
require regarding orderings and acyclicity fall
out. Data set designers can use this level of the
model to describe their designs, and by providing
metadata that expresses the design formally,
make it possible to validate the overall structure
of any specific data set against their intended
design.

Here we describe the main entities and
relationships that occur in our data set model.

Observation. An observation is the data
collected for one interaction — one dialogue
or small group discussion, for example.

Corpus. A corpus is a set of observations that
have the same basic structure and together are
designed to address some research need. For
each simple data type, metadata for the corpus
determines what attribute-value pairs can be
used to refine the type, whether or not
elements of that type have timing information
and/or children, and what features can be
present for them.

Agent. An agent is one interactant in an
observation. Agents can be human or
artificial. We provide the concept of agent so
that annotations can be identified as
describing the behaviour of a single agent or
of the interacting group as a whole. We do
not provide a way of identifying other subsets
of agents acting together as a group.

Signal. A signal is the output from one sensor
used to record an observation: for example,

an audio or video file or blood pressure data.
An observation may be recorded using more
than one signal, but these are assumed to be
synchronized, so that timestamps refer to the
same time on all of them.

Annotation. An annotation is an element that
describes part of an observation. When an
element is used to represent an annotation, it
will have a data type and may have timing
information, features and children. When an
annotation has children, it means that the
parent annotation dominates the children (for
instance, in the relationships between words
and syllables).

Object and Object Set. An object is an
element that represents something in the
universe to which an annotation might wish to
point. An object might be used, for instance,
to represent the referent of a referring
expression or the lexical entry corresponding
to a word token spoken by one of the agents.
When an element is used to represent an
object, it will have a data type and may have
features, but no timing or children. An object
set is a set of objects of the same or related
data types. Object sets have no inherent
order.

Complex type and Ontology. An ontology is
a tree of elements that makes use of the
parent/child structure to specify
specializations of a data type. In the tree, the
root is an element naming some simple data
type that is used by some annotations. In an
ontology, if one type is a child of another, that
means that the former is a specialization of
the latter. The children of an element in an
ontology are unordered and can define
attributes specific to that specialization. We
have defined ontologies to make it simpler to
assign a basic type to an annotation in the first
instance, later refining the type. When this is
done, the annotation will retain its basic type
but can use a feature with the special reserved
role “type” of arity one to point to the
appropriate specialization in the
corresponding ontology.

Layer. A layer is a set of annotations that
together span an observation in some way,
containing all of the annotations for a

particular agent or for the interaction that are
either of the same type or drawn from a set of
related types. Which data types belong
together in a layer is defined by the corpus
metadata. For instance, the TEI defines a set
of tags for representing words, silences,
noises, and a few other phenomena, which
together span a text and make up the
orthographic transcription. In this treatment,
these tags would form a layer in our data set
model.

Time-Aligned Layer. A time-aligned layer is a
layer where the annotations conform to data
types that have timing information. By
having this structure, these annotations refer
directly to signal.

Structural Layer. A structural layer is a layer
where the annotations conform to data types
that can have children. The children of a
structural layer are constrained to be drawn
from a single layer, which, in order to allow
recursive structures, can be itself.

Featural Layer. A featural layer is a layer
where the annotations conform to data types
that may have features, but not children or
timing information. Features with the same
role in the same featural layer are constrained
to be filled by elements drawn from a single
layer. Annotations in a featural layer may not
be children of any other annotations. A
featural layer draws together other annotations
into clusters that represent phenomena that do
not adhere to our timing relationships. For
instance, a featural layer might contain
annotations that pair deictic gestures with
deictic pronouns. Since deictic pronouns and
their accompanying gestures can lag each
other by arbitrary amounts, there is no sense
in which the deictic pair spans from the start
of one to the end of the other.

Coding. A coding is a sequence of one or
more layers, all either for the same agent or
for the interaction as a whole, where each
layer’s children are taken from the next layer
in the sequence, ending either in a layer with
no children, in a layer whose children are in
the top layer of another coding. Codings
defined in this way consist of tree structures,
and the relations among codings allow for the

sort of multiply rooted tree illustrated in
figure one. Featural layers occur in single-
layer codings of their own. Since most
coherent sets of codes applied to the data at
the same time fit into tree structures, for many
corpora, the codings will correspond to what
can be loosely thought of as types of
annotation.

Together, these definitions preserve the ordering
properties that we desire; intuitively, time-
aligned and structural layers are ordered, and
timings can percolate up structural layers from a
time-aligned layer at the base. The layer
structure within a coding prohibits cycles.
Different time-aligned layers can exist for the
same signal, with different annotation layers
anchored to each, and featural layers gathering
phenomena from each into sets.

5 Data and metadata storage

It is not possible to define a data handling library
without first defining the storage format that the
loading routines expect to encounter and the
serialization routines expect to write. We have
chosen a format that separates each coding for
each observation into a separate file. For agent
codings, there is one file per agent; for
interaction codings, there is one file that covers
all of the agents together. Each object set and
ontology occupies one file that can be referenced
from codings relating to any observation in the
corpus.

The files themselves are given in an XML
format. By definition, each coding may only
contain hierarchically decomposable layers of
elements. The files therefore contain a <root>
element at the document level that identifies the
coding within, and then a tree structure document
where nodes at the first level correspond to the
first layer tags, nodes at the second level
correspond to the second layer tags, and so on
down to the leaves of the coding. Tags are
named directly by the types given in the metadata
definition, with the attributes defined. Links to
other codings, which can occur anywhere in
features but only at the tree’s leaves as children,
are specified using either XPointer/XLink syntax
or an older syntax used by LT-XML’s stand-off
facilities (McKelvie, Brew, & Thompson, 1998).
Metadata describing the data associated with a

corpus in terms of the data set model is also
expressed in a simple, fixed-schema XML
format. Figure 2 gives a sense of what the data
and metadata look like for part of figure 1. In the
figure, black arrows show links between
annotations, striped arrows show links from
annotations to type hierarchies, freckly arrows
show links between data and the metadata
defining it, and wavy arrows show links from
annotations to signal. The figure uses LT-XML
format links and omits references to the “nite”
namespace and all ids except those used for
linking, in the interests of space.

This choice of format has a number of
advantages over the other possibilities:

the data format is inspectable and amenable to
mainstream XML processing techniques,

such as stylesheets, even without our
handling library;

it can be validated using information
expressed in any of the standard XML
schema languages, including, say,
schemas or DTDs generated from the
metadata file;

by compartmentalizing data of different types,
part or all of the data can be loaded for
different purposes, and different people
can change different parts of the data at
the same time;

the storage format directly exposes tree
structures underlying the annotation, and
thus to the extent that annotations are tree-
structured, makes them easier to work with

o1.gestures-right.xml
...
<gest id="ge_1" target="toys" hand="right">
 <pointer role="TYPE"
href="gtypes.xml#id('g_6')"/>
 <phase start="0.4" end="0.8" type="prep"/>
 <phase start="0.8" end="1.2" type="stroke"/>
 <phase start="1.2" end="1.9" type="hold"/>
 <phase start="1.9" end="2.2" type="retract"/>
</gest>
...

gtypes.xml
<gtype id=”g_1" type="gesture">
 ...
 <gtype id="g_5"
type="topographic">
 <gtype id="g_6" type="deictic"/>
 ...

o1.prosody.xml
...
<accent tobi="H*">
 <child

href="o1.words.xml#id('w_4')"/>
 </accent>
...

o1.syntax.xml
...
<np hlem="toy">
 <child
 href="o1.words.xml#id('w_4')"/>
 <child
 href="o1.words.xml#id('w_5')"/>
</np>
...

o1.words.xml
< root id="o1.words">
 ...
 <word id="w_4" start="1.0" end="1.4" orth="these" pos="CD"/>
 <word id="w_5" start="1.4" end="1.7" orth="toys" pos="NNS"/>
...

metadata.xml
...
<interaction-codings>
 <coding-file name="words">
 <time-aligned-layer name="words-layer">
 <code name="word">
 <attribute name="orth" val-
type="string"/>
 <attribute name="pos" val-type="enum">
 <value>DT</value>
 ...
<observations>
 <observation name=”o1”/>
...

Figure 2: The XML data and metadata storage for part of the example in figure 1.

than, for instance, data expressed in Atlas
Interchange Format.

6 The NOM Library

The NOM library, the first release of which is
available from http://www.ltg.ed.ac.uk/NITE,
provides an API for loading, saving and
manipulating both the data and metadata
associated with a corpus. The library is
implemented in Java, though can of course be
called from other programming languages too.

The NOM library design explicitly caters for a
split between read and write functionality. For
applications like corpus search, we may be able
to make significant efficiency gains by making
the assumption that the corpus is not changing
'under our feet'. Our first NOM implementation
provides both read and write functionality, so
does not assume the corpus is static.

6.1 Metadata handling

Metadata is essential to operations like loading
and saving data as it defines both the expected
structure of an annotated corpus and where to
find the signals and data files on disk. In our
implementation, the metadata is tightly coupled
to the object model library, which means that it
can only handle data that conforms to our data set
model even though the object model itself is less
restrictive. This is because the possible
advantages of separating the NOM from the data
set model are outweighed by the efficiency gains
we can achieve through a tight coupling here, and
because most applications will wish to validate
against the data set model anyway.

The metadata API provides access to
information about the corpus described in the
terms of the data set model. It also provides
some limited routines for common metadata
manipulations that we expect to be required
programmatically, such as changing the paths to
the data files. We expect more substantive
corpus design changes to be made using an XML
editor.

6.2 Data loading and serialization

Once the metadata for a corpus has been loaded,
data can be loaded using our API either for an

entire corpus or for one observation at a time. In
the latter case, more observations can be loaded
to build up the corpus incrementally.

Serialization methods save either the entire
loaded corpus or just the files that have changed.
The implementation offers a choice of link style
between XPointer/XLink and LT-XML.

6.3 Data handling

We provide an iterator that visits each node in the
object model exactly once, as well as access by
element type or id. Elements are linked to their
specifications in the metadata, so that the
information required to check attribute and
structural constraints is readily accessible. It is
possible to navigate from an element to its
relatives in the graph using the API. As one
would expect, the API also provides routines for
manipulating the object model, for instance, by
adding an attribute, child, or feature to an
existing element, or adding a new element to a
time-aligned layer with a particular start and end
time. Whenever elements are added or deleted,
or their start and end times are changed, the
NOM remains internally coherent by percolating
the time changes up through any dominating
structural layers. This percolation assumes that
for any two adjacent children, the end time of the
first is before the start time of the second, and
that parents take their start time from their first
child and end time from their last one..

6.4 Data sharing

The NOM library also provides facilities for
sharing a single in-memory data set between
multiple applications. In order to do this, we
introduce the concept of a NOM controller and a
NOM view. Any views that are registered with
the controller will be informed of edits to the
data, and will have any edits of its own passed
along to the other registered views. There are
two different granularities at which changes can
be viewed. A view can simply ask to be
informed each time any change is made to the
data, which would allow one to re-generate an
entire data display with the newly edited data.
Alternatively a view can receive much more
detailed information about edits that are intended
to enable incremental display changes.

7 Discussion

We provide an object model for representing
linguistic annotation that is oriented towards
heavily cross-annotated data sets, and a data set
model in terms of concepts that data set designers
will be able to use that naturally enforce the
structural properties that the object model
requires. Our implementation combining these
models can be used to handle our target data sets,
if they are stored in a particular stand-off XML
data format. Our system differs from other
libraries for working with annotated corpora, as
befits our development aims. The object model
is quite similar to ATLAS in its dominance
structures, but adds featural links that do not
entail timing relationships, complex data types,
and objects, and is less flexible about how it
anchors annotations in signal. Our data set
model is more prescriptive than MAIA, the
metadata proposed for ATLAS, which is its
closest equivalent.

In constructing a model that highlights the
relationships among annotations in a cross-
annotated data set, we do not suggest that this
model is the best one for all purposes. Our model
simply gives one way of handling a data set that
brings these relationships to the fore. Where a
data set only has one type of annotation, or where
annotations have no inherent structure behind
their timings, using such a model only adds
overhead processing costs. Similarly, even when
a data set is amenable to treatment with this
model, there will be processes for which a
simpler model is more appropriate. For instance,
when calculating n-grams, a model such as the
annotation graph that exposes labels and timing
information will be more efficient.

8 Future Work

We are currently considering how to improve
processing efficiency for our implementation,
whether or not to provide a read-only version,
and what validation to provide. The NOM
provides some validation during processing that
can be turned off to increase speed, but it may
also be useful to generate XML Schemas from
the metadata that allow at least the structural and
typing constraints to be checked off-line.

In addition to the NOM, we plan other
software as infrastructural support. The primary

purpose of building any data model is, of course,
to expose the data set to query. In addition to the
work described here, we have also designed a
query language (Evert & Voormann, 2002) that
makes use of the inherent structure of this model
in order to allow the easy expression of queries
that relate different annotations together. We are
also updating an idea prototyped in the MATE
project (McKelvie et al., 2001) for what is now
standard XML technology. This involves
implementing a library of Java display objects
that can be called upon for writing data displays
and interfaces, and an engine for constructing
tailored coding interfaces from a stylesheet that
declaratively specifies the interface’s appearance
and behaviour.

References
Anderson, A. H., Bader, M., Bard, E. G., Boyle, E.,

Doherty, G., Garrod, S., Isard, S., Kowtko, J.,
McAllister, J., Miller, J., Sotillo, C.,
Thompson, H., & Weinert, R. (1991). The
HCRC Map Task Corpus. Language and
Speech, 34(4), 351-366.

Evert, S., Carletta, J. C., O'Donnell, T. J., Kilgour, J.,
Vogele, A., & Voormann, H. (2002). NXT
Data Model. From
http://www.ltg.ed.ac.uk/NITE/documents.ht
ml.

Evert, S., & Voormann, H. (2002). NITE Query
Language. From
http://www.ltg.ed.ac.uk/NITE/documents.ht
ml.

Laprun, C., Fiscus, J. G., Garofolo, J., & Pajot, S.
(2002, May). A Practical Introduction to
ATLAS. Paper presented at the 3rd
International Conference on Language
Resources and Evaluation (LREC), Las
Palmas.

Ma, X., Lee, H., Bird, S., & Maeda, K. (2002). Models
and Tools for Collaborative Annotation.
Paper presented at the Third International
Conference on Language Resources and
Evaluation.

McKelvie, D., Brew, C., & Thompson, H. (1998).
Using SGML as a Basis for Data-Intensive
Natural Language Processing. Computers
and the Humanities, 31(5), 367-388.

McKelvie, D., Isard, A., Mengel, A., Møller, M. B.,
Grosse, M., & Klein, M. (2001). The MATE
Workbench - an annotation tool for XML
coded speech corpora. Speech
Communication, 33(1-2), 97-112.

