#### Means of Productivity

## On the Statistical Modelling of the Restrictedness of Lexico-Grammatical Patterns

## Sascha Diwersy<sup>1</sup>, Stefan Evert<sup>2</sup>, Philipp Heinrich<sup>2</sup>, and Thomas Proisl<sup>2</sup>

<sup>2</sup>*Praxiling*, **Université Paul-Valéry** (Montpellier 3) <sup>2</sup>*Chair of CCL*, **Friedrich-Alexander-Universität Erlangen-Nürnberg** 



#### Aims of the talk

- tackle the question of fixed vs. free combinatorics from a predominantly distributional point of view
- need for viable (lexico-statistical) methodology
- starting point: work on morphological and syntactic productivity and adequate measures

#### Lexique-Grammaire

- Gross (1996); Mejri (1998): work on fixedness (French *figement*)
- several criteria:
  - restrictions of syntactic transformations
  - restrictions on syntactic extensions (insertion of modifiers)
  - restrictions on the use of determiners
  - restrictions on paradigmatic commutation
- degrees of fixedness: continuum reaching from totally fixed to more or less free expressions (see amongst others Gross (1996: 16–17); Le Pesant (2003: 106))

### Cognitive Linguistics

- syntax-lexicon continuum (Croft and Cruse, 2004: 255) ranging from
  - atomic and substantive units (e.g. monomorphemic words) to
  - complex and schematic units (e.g. syntactic patterns)

| Construction type                 | Traditional name           | Examples                      |
|-----------------------------------|----------------------------|-------------------------------|
| Complex and (mostly)<br>schematic | syntax                     | [SBJ be- TNS VERB -en by OBL] |
| Complex, substantive verb         | subcategorization<br>frame | [SBJ consume OBJ]             |
| Complex and (mostly) substantive  | idiom                      | [kick-TNS the bucket]         |
| Complex but bound                 | morphology                 | [NOUN-S], [VERB-TNS]          |
| Atomic and schematic              | syntactic category         | [Dem], [Adj]                  |
| Atomic and substantive            | word/lexicon               | [this], [green]               |

 our focus is on complex units with different degrees of schematicity or substantiveness (depending on the perspective one might take)

Syntactic Productivity

- Barðdal (2008): productivity cline ranging from schematicity to specificity
- inverse correlation of type frequency and semantic coherence:
  - schematicity:
    high type frequency + low semantic coherence
  - specificity: low type frequency + high degree of semantic coherence
- full productivity by schema extension vs. productivity by analogic extension

### Syntactic Productivity

type frequency and semantic coherence (Barðdal, 2008)



#### Productivity of the N+be+that pattern

- the use of so called "shell nouns" (Schmid, 2000) as subject of copula clauses involving the linking verb BE and a THAT-clause functioning as subject complement
- shell nouns serve specific semantic, cognitive and textual functions (Schmid, 2000: 14):
  - semantic: characterizing and perspectivizing complex chunks of information expressed in textual segments of various length
  - cognitive: encapsulation of complex chunks of information in temporary nominal concepts with apparently rigid and clear-cut conceptual boundaries
  - textual: linking these nominal concepts with clauses or other pieces of text which contain the actual details of information

## Productivity of the N+*be*+*that* pattern

examples of shell noun uses

- Our main <u>concern</u> as a group is that we do not waste the money. [BNC AT1: 2091]
- The <u>problem</u> here is that having so easy access and the largest concentration of easy routes, it is very crowded at holiday time. [BNC A15: 876]
- But the <u>fact</u> is that the very lack of evidence seems to fan the flames of suspicion. [BNC CB8: 298]
- The <u>point</u> is, that for the first time in decades, the environmentalists have a powerful voice – and a Government which claims to listen.
   [BNC AAG: 68]

#### Data extraction

- Treebank.info (Proisl and Uhrig, 2012): http://treebank.info
- British National Corpus XML Edition
  - original tokenization
  - Stanford Parser 1.6.9
  - Erlangen lemmatizer



#### Data extraction

- number of matches extracted via treebank.info: 32,907
- random sample of 10%
- manual validation of 3,290 matches
- elimination of 765 occurrences
  - parsing errors
  - sentence duplicates in corpus
- final sample size: 2,525 items

#### Data set

- data table with 2,525 instances of the construction:
  - noun lemma (N\_lemma)
  - realization of copula (to\_be)
  - verb of embedded clause (that\_V)
  - pre/postmodification of noun (PreMod, PostMod, hasPreMod, hasPostMod)
  - as well as BNC text/sentence ID (BNCTextID, SentenceID) and BNC metadata for the respective text
- the full sentence (Sentence) is included with noun, copula and embedded verb marked

#### Semantic classification of shell noun uses

shell noun uses are classified into 6 categories (Schmid, 2000):

| Factual        | thing, problem     |
|----------------|--------------------|
| Linguistic     | promise, story     |
| Mental         | idea, worry        |
| Modal          | possibility, truth |
| Eventive       | mistake            |
| Circumstantial | place, way         |

## Semantic classification of shell noun uses

examples

- Factual: The main thing is that we're bubbling again and the lads know we can do much better. [BNC K32: 2446]
- Linguistic: The most popular <u>story</u> concerning her conception <u>was that</u> a golden egg <u>tumbled</u> out of Chaos in the beginning of the world . [BNC CAC: 1107]
- Mental: In the ancient world, the <u>belief was that</u> each person was represented by a star. [BNC CEJ: 656]
- Modal: Their 31-year-old marriage has been described as unconventional but the <u>reality is that</u> they <u>live</u> entirely separate lives. [BNC HAE: 4911]

### Semantic classification of shell noun uses

ambiguous, or rather vague shell noun uses

- Linguistic | Mental (see Schmid, 2000: 137f.): admission, assumption, claim, forecast, guess, prediction
- fact: Factual | Modal (see Schmid, 2000: 97):
  "[T]his noun is used by speakers in the focusing pattern
  N has classical in the collection the fact is a that shows

N-be-cl, i.e. in the collocation *the fact is* + *that*-clause, as an emphatic gesture. With the noun *fact*, however, the emphasis is not so much on the relevance of the shell content but on the claim that what is expressed in the *that*-clause is true. Such uses are therefore emphatics for epistemic necessity and will be looked at again in the section on epistemic uses (...)."

• *point*: Factual | Linguistic | Mental (see Schmid, 2000: 96)

## Quantitative analysis: fixedness and productivity for the full sample of 2,525 instances

| rank                            | f                         | type                                                 |                                                                                                                           |
|---------------------------------|---------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 1.                              | 379                       | point                                                | result, answer,                                                                                                           |
| 2.                              | 257                       | problem                                              | advantage, position,                                                                                                      |
| 3.                              | 129                       | thing                                                | view, difficulty, truth,                                                                                                  |
| 4.                              | 95                        | reason                                               | effect, feature,                                                                                                          |
| 5.                              | 80                        | fact                                                 | consequence,                                                                                                              |
| 6.                              | 63                        | trouble                                              | conclusion, implication,                                                                                                  |
| 7.                              | 59                        | difference                                           | explanation, argument                                                                                                     |
| 41.<br>42.<br>43.<br>44.<br>46. | 11<br>10<br>10<br>10<br>9 | fear<br>feeling<br>finding<br>significance<br>belief | theory, change,<br>impression, way,<br>essence, snag,<br>drawback, hope,<br>justification, message,<br>objection, reality |
| 167.                            | 1                         | achievement                                          | algorithm, rumour,                                                                                                        |
| 247.                            | 1                         | objective                                            | attitude, figure,                                                                                                         |
| 286.                            | 1                         | satisfaction                                         | subject, development,                                                                                                     |
| 301.                            | 1                         | target                                               | favour, practice, driver                                                                                                  |

#### Quantitative analysis: fixedness and productivity for the full sample of 2,525 instances

- relevant quantitative data: type-token distribution (Baayen, 2001)
- N = 2525 tokens
- *V* = 315 types
- $V_1 = 151$  hapaxes



#### Quantitative analysis: fixedness and productivity for the full sample of 2,525 instances



#### Quantitative analysis: fixedness and productivity for the full sample of 2,525 instances

 $V_m/E[V_m]$ 

- relevant quantitative data: type-token distribution (Baayen, 2001)
- N = 2525 tokens
- *V* = 315 types
- $V_1 = 151$  hapaxes
- frequency spectrum  $V_m \rightarrow$  productivity
- statistical analysis with LNRE / ZM (Baayen, 2001; Evert, 2004)

N-is-that: Zipf-Mandelbrot models



# Vocabulary growth curves & non-randomness for the full sample of 2,525 instances

N-is-that: vocabulary growth curve



# Vocabulary growth curves & non-randomness for the full sample of 2,525 instances





### Vocabulary growth curves & non-randomness

1,666 instances w/o expressions the point/problem/fact/trouble/position/difficulty is that

N-is-that: vocabulary growth curve (w/o expressions)



|                | á   | all  | w/o expr |     |
|----------------|-----|------|----------|-----|
| category       | V   | N    | V        | Ν   |
| Circumstantial | 12  | 17   | 12       | 17  |
| Eventive       | 11  | 29   | 11       | 29  |
| Factual        | 111 | 1578 | 106      | 788 |
| Linguistic     | 66  | 682  | 65       | 303 |
| Mental         | 94  | 803  | 92       | 385 |
| Modal          | 22  | 211  | 21       | 131 |

For some analyses, the following expressions are excluded: *the point/problem/fact/trouble/position/difficulty is that* 





Diwersy et al. (Europhras 2019)

January 24, 2019 22 / 32



Diwersy et al. (Europhras 2019)

January 24, 2019 22 / 32

#### Statistical analysis with LNRE models



### Limitations of current LNRE models



### Limitations of current LNRE models (w/o expressions)



### The middle ground: Statistical association

#### for the full sample of 2,525 instances rang f type

| ang | f   | type         | <i>E</i> [f] | $\log G^2$ | MI <sub>conf</sub> |  |
|-----|-----|--------------|--------------|------------|--------------------|--|
| 1   | 379 | point        | 4.787        | 7.850      | 5.986              |  |
| 2   | 257 | problem      | 5.600        | 7.290      | 5.127              |  |
| 3   | 129 | thing        | 7.510        | 6.198      | 3.535              |  |
| 4   | 95  | reason       | 2.870        | 6.177      | 4.380              |  |
| 5   | 80  | fact         | 4.198        | 5.771      | 3.517              |  |
| 6   | 63  | trouble      | 0.947        | 6.006      | 5.217              |  |
| 7   | 59  | difference   | 1.899        | 5.678      | 4.088              |  |
|     |     |              |              |            |                    |  |
| 41  | 11  | fear         | 0.942        | 3.554      | 1.189              |  |
| 42  | 10  | feeling      | 1.218        | 3.240      | 0.529              |  |
| 43  | 10  | finding      | 0.445        | 3.787      | 1.981              |  |
| 44  | 10  | significance | 0.465        | 3.768      | 1.917              |  |
| 46  | 9   | belief       | 0.746        | 3.378      | 0.904              |  |
|     |     |              |              |            |                    |  |
| 167 | 1   | achievement  | 0.458        | 0.391      | -14.817            |  |
| 247 | 1   | objective    | 0.729        | 0.086      | -15.487            |  |
| 286 | 1   | satisfaction | 0.287        | 0.728      | -14.143            |  |
| 301 | 1   | target       | 0.902        | 0.010      | -15.794            |  |
|     |     |              |              |            |                    |  |

#### The middle ground: Statistical association



### Conclusion

- combination of quantitative approaches to capture the three sides of the syntax-lexicon continuum
  - fixedness
    preference
    productivity
    frequency + concordance
    association strength + semantics
    type-token distribution (LNRE models)
- methodological improvements needed
  - more flexible & robust LNRE models
  - integration of type-token statistics with association measures

#### Conclusion

- aspects of productivity and fixedness in terms of functional and structural parameters pertaining to the N+*is*+*that* pattern
  - differences between semantic classes have to do with the central role of the *that* clause from a functional point of view: characterizing propositions (Factual, Linguistic, Mental) vs. characterizing state of affairs
  - ▶ highly frequent (as well as ambiguous or vague) nouns, e.g. point: loss of (semantic) characterizing function in favour of the (textual) linking function → the point is that as emphatic focus marking connector
  - variation of the internal structure of the subject NP will need to be taken account of: the + N vs. DET:poss | POSS + N vs. DET:indef + PREMOD + N

Thanks for listening. **Questions?** 

#### References

- R. Harald Baayen. *Word Frequency Distributions*. Kluwer Academic Publishers, Dordrecht, 2001.
- Jóhanna Barðdal. *Productivity: Evidence from Case and Argument Structure in Icelandic*, volume 8 of *Constructional Approaches to Language*. John Benjamins Publishing Company, Amsterdam, December 2008.
- William Croft and D. Alan Cruse. *Cognitive Linguistics*. Cambridge University Press, Cambridge, 2004.
- Stefan Evert. A simple LNRE model for random character sequences. In Proceedings of the 7èmes Journées Internationales d'Analyse Statistique des Données Textuelles (JADT 2004), pages 411–422, Louvain-la-Neuve, Belgium, 2004.
- Gaston Gross. Les expressions figées en français, noms composés et autres locutions. Ophrys, Paris, 1996.
- Denis Le Pesant. Quelques schèmes productifs de noms composés de forme N de N. *Cahiers de lexicologie*, (82):105–115, 2003.
- Salah Mejri. Le figement lexical : descriptions linguistiques et structuration sémantique. *L'information grammaticale*, 76(1):50–51, 1998.
- Thomas Proisl and Peter Uhrig. Efficient dependency graph matching with the IMS Open Corpus Workbench. In *Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC 2012)*, pages 2750–2756, Istanbul, 2012. European Language Resources Association.
- Hans-Jörg Schmid. *English Abstract Nouns as Conceptual Shells. From Corpus to Cognition.* De Gruyter Mouton, Berlin, Boston, 2000.

 $V_m/E[V_m]$ 

#### Statistical analysis with LNRE models

- LNRE model (Baayen, 2001) assumes Zipfian population
- parameters estimated from comparison of observed and expected frequency spectrum
- here: Zipf-Mandelbrot

$$\pi_i = \frac{C}{(i+b)^a}$$

(Evert, 2004)

N-is-that: Zipf-Mandelbrot models



#### Productivity & semantics: Word embeddings FACTUAL



#### Productivity & semantics: Word embeddings MENTAL



# Productivity & semantics: Word embeddings



# Productivity & semantics: Word embeddings



# Productivity & semantics: Word embeddings

