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1 Introduction1

1.1 The controversy around collocations2

The concept of collocations is certainly one of the most controversial notions in linguis-3

tics, even though it is based on a compelling, widely-shared intuition that certain words4

have a tendency to occur near each other in natural language. Examples of such collo-5

cations are cow and milk, day and night, ring and bell, or the infamous kick and bucket.16

Other words, like know and glass or door and year, do not seem to be particularly attracted7

to each other.2 J. R. Firth (1957) introduced the term “collocations” for characteristic8

and frequently recurrent word combinations, arguing that the meaning and usage of a9

word (the node) can to some extent be characterised by its most typical collocates: “You10

shall know a word by the company it keeps” (Firth 1957, 179). Firth was clearly aware11

of the limitations of this approach. He understood collocations as a convenient first ap-12

proximation to meaning at a purely lexical level that can easily be operationalised (cf.13

Firth 1957, 181). Collocations in this Firthian sense can also be interpreted as empirical14

statements about the predictability of word combinations: they quantify the “mutual ex-15

pectancy” (Firth 1957, 181) between words and the statistical influence a word exerts on16

its neighbourhood. Firth’s definition of the term remained vague, though,3 and it was only17

formalised and implemented after his death, by a group of British linguists often referred18

to as the Neo-Firthian school. Collocations have found widespread application in compu-19

tational lexicography (Sinclair 1966, 1991), resulting in corpus-based dictionaries such as20

COBUILD (Sinclair 1995; see also Article 8).421

In parallel to the development of the Neo-Firthian school, the term “collocations” came22

to be used in the field of phraseology for semi-compositional and lexically determined23

word combinations such as stiff drink (with a special meaning of stiff restricted to a partic-24

ular set of nouns), heavy smoker (where heavy is the only acceptable intensifier for smoker),25

give a talk (rather than make or hold) and a school of fish (rather than group, swarm or26

1The first two examples are from Firth (1957), the third came up in a corpus of Dickens novels (as the
second most strongly associated verb-noun combination after shake and head, for cooccurrence within sen-
tences and the simple-ll measure). Bell is also the top collocate of the verb ring in the British National Corpus,
according to the BNCweb collocation analysis (robustly for several association measures and span sizes).

2Both examples can be validated in the British National Corpus, using BNCweb. In the corpus of Dickens
novels, know and glass show no significant association despite a cooccurrence frequency of f = 27 (two-sided
Fisher’s test p = .776, for verb-noun cooccurrences within sentences). In the Brown corpus, the nouns door
and year show marginally significant evidence for a negative association (two-sided Fisher’s test p = .0221,
for noun-noun cooccurrences within sentences).

3“Moreover, these and other technical words are given their ‘meaning’ by the restricted language of the
theory, and by applications of the theory in quoted works.” (Firth 1957, 169)

4Firth himself obviously had lexicographic applications of collocations in mind: “It is clearly an essential
procedure in descriptive lexicography” (Firth 1957, 180). He also anticipated the advent of corpus-based
dictionaries and gave a “blueprint” of computational lexicography (Firth 1957, 195–196).
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flock). This view has been advanced forcefully by Hausmann (1989) and has found in-1

creasingly widespread acceptance in recent years (e.g. Grossmann and Tutin 2003). It2

is notoriously difficult to give a rigorous definition of collocations in the phraseological3

sense and differentiate them from restricted word senses (most dictionaries have separate4

subentries for the special meanings of stiff, heavy and school in the examples above).55

There is considerable overlap between the phraseological notion of collocations and the6

more general empirical notion put forward by Firth (cf. the examples given above), but7

they are also different in many respects (e.g., good and time are strongly collocated in8

the empirical sense, but a good time can hardly be understood as a non-compositional or9

lexically restricted expression). This poor alignment between two interpretations of the10

same term has resulted in frequent misunderstandings and has led to enormous confusion11

on both sides.6 The situation is further complicated by a third meaning of “collocations”12

in the field of computational linguistics, where it is often used as a generic term for any13

lexicalised word combination that has idiosyncratic semantic or syntactic properties and14

may therefore require special treatment in a machine-readable dictionary or natural lan-15

guage processing system. This usage seems to originate with Choueka (1988) and can16

be found in standard textbooks, where collocations are often defined in terms of non-17

compositionality, non-modifiability and non-substitutability (Manning and Schütze 1999,18

184). It has recently been superseded by the less ambiguous term multiword expression19

(cf. Sag et al. 2002).20

An excellent overview of the competing definitions of collocations and their historical21

development is given by Bartsch (2004). Interestingly, she takes a middle road with her22

working definition of collocations as “lexically and/or pragmatically constrained recurrent23

co-occurrences of at least two lexical items which are in a direct syntactic relation with24

each other” (Bartsch 2004, 76).7 For a compact summary, refer to Williams (2003).25

1.2 Definitions and recommended terminology26

In order to avoid further confusion, a consistent terminology should be adopted. Its27

most important goal is to draw a clear distinction between (i) the empirical concept of28

recurrent and predictable word combinations, which are a directly observable property29

of natural language, and (ii) the theoretical concept of lexicalised, idiosyncratic multi-30

word expressions, defined by linguistic tests and speaker intuitions. In this article, the31

term “collocations” is used exclusively in its empirical Firthian sense (i), and we may oc-32

casionally speak of “empirical collocations” to draw attention to this fact. Lexicalised word33

combinations as a theoretical, phraseological notion (ii) are denoted by the generic term34

“multiword expressions”, following its newly established usage in the field of computational35

linguistics. In phraseological theory, multiword expressions are divided into subcategories36

ranging from completely opaque idioms to semantically compositional word combinations,37

which are merely subject to arbitrary lexical restrictions (brush teeth rather than scrub38

teeth) or carry strong pragmatic connotations (red rose). A particularly interesting cate-39

5The Oxford American Dictionary shipped with the Mac OS X operating system, for instance, has “stiff 2:
(of an alcoholic drink) strong” and “school2: a large group of fish or sea mammals”.

6Some researchers even seem to have formed the impresssion of a war raging between the two camps,
prompting them to offer peace talks “aus einer Position der Stärke” [“from a position of strength”] (Hausmann
2004).

7When Bartsch operationalises her notion of collocations, this working definition is amended with “an
element of semantic opacity such that the meaning of the collocation cannot be said to be deducible as a
function of the meanings of the constituents” (Bartsch 2004, 77). Thus, one might argue that collocations
are a subclass of lexicalised multiword expressions, and perhaps even fall under the narrower phraseological
concept of semi-compositional combinations.
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gory in the middle of this cline are semi-compositional expressions, in which one of the1

words is lexically determined and has a modified or bleached meaning (classic examples2

are heavy smoker and give a talk). They correspond to the narrow phraseological meaning3

of the term “collocations” (cf. Grossmann and Tutin 2003) and can be referred to as “lexical4

collocations”, following Krenn (2000). As has been pointed out above, it is difficult to give5

a precise definition of lexical collocations and to differentiate them e.g. from specialised6

word senses. Because of this fuzziness and the fact that many empirical collocations are7

neither completely opaque nor fully compositional, similar to lexical collocations, the two8

concepts are easily and frequently confused.9

This article is concerned exclusively with empirical collocations, since they constitute10

one of the fundamental notions of corpus linguistics and, unlike lexicalisation phenom-11

ena, can directly be observed in corpora. It is beyond the scope of this text to delve12

into the voluminous theoretical literature on multiword expressions, but see e.g. Bartsch13

(2004) and Grossmann and Tutin (2003) for useful pointers. There is a close connection14

between empirical collocations and multiword expressions, though. A thorough analysis15

of the collocations found in a corpus study will invariably bring up non-compositionality16

and lexicalisation phenomena as an explanation for many of the observed collocations (cf.17

the case study in Section 2.2). Conversely, theoretical research in phraseology can build18

on authentic examples of multiword expressions obtained from corpora, avoiding the bias19

of relying on introspection or stock examples like kick the bucket (which is a rather un-20

common phrase indeed: only three instances of the idiom can be found in the 100 million21

words of the British National Corpus).8 Multiword extraction techniques exploit the often22

confusing overlap between the empirical and theoretical notions of collocation. Empirical23

collocations are identified as candidate multiword expressions, then the “false positives”24

are weeded out by manual inspection. A more detailed account of such multiword extrac-25

tion procedures can be found in Section 6.2.26

Following the Firthian tradition (e.g. Sinclair 1991), we define a collocation as a com-27

bination of two words that exhibit a tendency to occur near each other in natural language,28

i.e. to cooccur (but see the remarks on combinations of three or more words in Section 7.1).29

The term “word pair” is used to refer to such a combination of two words (or, more pre-30

cisely, word types; see Article 36 for the distinction between types and tokens) in a neutral31

way without making a commitment regarding its collocational status. In order to empha-32

sise this view of collocations as word pairs, we will use the notation (kick, bucket) instead33

of e.g. kick (the) bucket. In general, a word pair is denoted by (w1, w2), with w1 = kick and34

w2 = bucket in the previous example; w1 and w2 are also referred to as the components of35

the word pair. The term “word” is meant in the widest possible sense here and may refer to36

surface forms, case-folded surface forms, base forms, etc. (see Article 25). While colloca-37

tions are most commonly understood as combinations of orthographic words, delimited by38

whitespace and punctuation, the concept and methodological apparatus can equally well39

be applied to combinations of linguistic units at other levels, ranging from morphemes to40

phrases and syntactic constructions (cf. Article 43).41

In order to operationalise our definition of collocations, we need to specify the precise42

circumstances under which two words can be said to “cooccur”. We also need a formal43

definition of the “attraction” between words reflected by their repeated cooccurrence, and44

a quantitative measure for the strength of this attraction. The cooccurrence of words can be45

defined in many different ways. The most common approaches are (i) surface cooccurrence,46

8There are 20 instances of the collocation (kick, bucket) in the British National Corpus. Of these, 8 instances
are literal uses (e.g., It was as if God had kicked a bucket of water over.), 9 instances cite the idiom kick the
bucket in a linguistic meta-discussion, and only 3 are authentic uses of the idiom. See Appendix A.2 for a
complete listing of the corpus examples.
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where words are said to cooccur if they appear close to each other in running text, mea-1

sured by the number of intervening word tokens; (ii) textual cooccurrence of words in the2

same sentence, clause, paragraph, document, etc.; and (iii) syntactic cooccurrence between3

words in a (direct or indirect) syntactic relation, such as a noun and its modifying adjec-4

tive (which tend to be adjacent in most European languages) or a verb and its object noun5

(which may be far apart at the surface, cf. Goldman et al. (2001, 62) for French). These6

three definitions of cooccurrence are described in more detail in Section 3, together with7

appropriate methods for the calculation of cooccurrence frequency data.8

The hallmark of an attraction between words is their frequent cooccurrence, and col-9

locations are sometimes defined simply as “recurrent cooccurrences” (Smadja 1993, 147;10

Bartsch 2004, 11). Strictly speaking, any pair of words that cooccur at least twice in a11

corpus is a potential collocation according to this view. It is common to apply higher12

frequency thresholds, however, such as a minimum of 3, 5 or even 10 cooccurrences. Evert13

(2004, Ch. 4) gives a mathematical justification for this approach (see also Section 7.1),14

but a more practical reason is to reduce the enormous amounts of data that have to be15

processed. It is not uncommon to find more than a million recurrent word pairs (f ≥ 2) in16

a corpus containing several hundred million running words, but only a small proportion17

of them will pass a frequency threshold of f ≥ 10 or higher, as a consequence of Zipf’s law18

(cf. Article 37).9 In the following, we use the term “recurrent word pair” for a potential19

collocation that has passed the chosen frequency threshold in a given corpus.20

Mere recurrence is no sufficient indicator for a strong attraction between words, though,21

as will be illustrated in Section 4.1. An additional measure of attraction strength is there-22

fore needed in order to identify “true collocations” among the recurrent word pairs, or to23

distinguish between “strong” and “weak” collocations. The desire to generalise from recur-24

rent word pairs in a particular corpus (as a sample of language) to collocations in the full25

language or sublanguage, excluding word pairs whose recurrence may be an accident of26

the sampling process, has led researchers to the concept of statistical association (Sinclair27

1966, 418). Note that this mathematical meaning of “association” describes a statistical28

attraction between certain events and must not be confused with psychological associa-29

tion (as e.g. in word association norms, which have no direct connection to the statistical30

association between words that is of interest here). By interpreting occurrences of words31

as events, statistical association measures can be used to quantify the attraction between32

cooccurring words, completing the formal definition of empirical collocations.33

The most important association measures will be introduced in Sections 4 and 5, but34

many other measures have been suggested in the mathematical literature and in colloca-35

tion studies. Such measures assign an association score to each word pair, with high scores36

indicating strong attraction and low scores indicating weak attraction (or even repulsion)37

between the component words. Association scores can then be used to select “true collo-38

cations” by setting a threshold value, or to rank the set of recurrent word pairs according39

to the strength of their attraction (so that “strong” collocations are found at the top of the40

list). These uses of association scores are further explained in Section 2.1. It is important41

to keep in mind that different association measures may lead to entirely different rank-42

ings of the word pairs (or to different sets of “true collocations”). Section 6 gives some43

guidance on how to choose a suitable measure.44

9In the British National Corpus, there are ca. 3.6 million bigram types (excluding punctuation etc.) with
f ≥ 2. Less than 700,000 pass a threshold of f ≥ 10, and only 160,000 pass f ≥ 50.
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1.3 Overview of the article1

Section 2 describes the different uses of association scores and illustrates the linguistic2

properties of empirical collocations with a case study of the English noun bucket. The3

three types of cooccurrence (surface, textual and syntactic) are defined and compared in4

Section 3, and the calculation of cooccurrence frequency data is explained with the help5

of toy examples. Section 4 introduces the concepts of statistical association and indepen-6

dence underlying all association measures. It also presents a selection of simple measures,7

which are based on a comparison of observed and expected cooccurrence frequency. Sec-8

tion 5 introduces more complex statistical measures based on full-fledged contingency9

tables. The difficulty of choosing between the large number of available measures is the10

topic of Section 6, which discusses various methods for the comparison of association mea-11

sures. Finally, Section 7 addresses some open questions and extensions that are beyond12

the scope of this article, and lists references for further reading.13

Readers in a hurry may want to start with the “executive summaries” in Section 4.314

and at the beginning of Section 7, which give a compact overview of the collocation iden-15

tification process with simple association measures. You should also skim the examples in16

Section 3 to understand how appropriate cooccurrence frequency data are obtained from17

a corpus, find out in Section 4.1 how to calculate observed cooccurrence frequency O and18

expected frequency E, and refer to Figure 4 for the precise equations of various simple19

association measures.20

2 What are collocations?21

2.1 Using association scores22

Association scores as a quantitative measure of the attraction between words play a cru-23

cial role in the operationalisation of empirical collocations, next to the formal definition24

of cooccurrence and the appropriate calculation of cooccurrence frequency data. While25

the interpretation of association scores seems straightforward (high scores indicate strong26

attraction), they can be used in different ways to identify collocations among the recur-27

rent word pairs found in a corpus. The first contrast to be made is whether collocativity is28

treated as a categorical phenomenon or as a cline, leading either to threshold approaches29

(which attempt to identify “true collocations”) or to ranking approaches (which place30

word pairs on a scale of collocational strength without strict separation into collocations31

and non-collocations). A second contrast concerns the grouping of collocations: the unit32

view is interested in the most strongly collocated word pairs, which are seen as indepen-33

dent units; the node–collocate view focuses on the collocates of a given node word, i.e. “the34

company it keeps”. The two contrasts are independent of each other in principle, although35

the node–collocate view is typically combined with a ranking approach.36

In a threshold approach, recurrent word pairs whose association score exceeds a (more37

or less arbitrary) threshold value specified by the researcher are accepted as “true collo-38

cations”. We will sometimes refer to them as an acceptance set for a given association39

measure and threshold value. In the alternative approach, all word pairs are ranked ac-40

cording to their association scores. Pairs at the top of the ranked list are then considered41

“more collocational”, while the ones at the bottom are seen as “less collocational”. How-42

ever, no categorical distinction between collocations and non-collocations is made in this43

approach. A third strategy combines the ranking and threshold approaches by accepting44

the first n word pairs from the ranked list as collocations, with n either determined in-45

teractively by the researcher or dictated by the practical requirements of an application.46

6



Typical choices are n = 100, n = 500, n = 1,000 and n = 2,000. Such n-best lists can1

be interpreted as acceptance sets for a threshold value determined from the corpus data2

(such that exactly n word pairs are accepted) rather than chosen at will. Because of the3

arbitrariness of pre-specified threshold values and the lack of good theoretical motivations4

(cf. Section 4.2), n-best lists should always be preferred over threshold-based acceptance5

sets. It is worth pointing out that in either case the ranking, n-best list or acceptance set6

depends critically on the particular association measure that has been used. The n-best7

lists shown in Tables 4 and 5 are striking examples of this fact.8

The unit view interprets collocations as pairs of words that show a strong mutual at-9

traction, or “mutual expectancy” (Firth 1957, 181).10 It is particularly suitable and popular10

for multiword extraction tasks, where n-best lists containing the most strongly associated11

word pairs in a corpus are taken as candidate multiword expressions. Such candidate lists12

serve e.g. as base material for dictionary updates, as terminological resources for transla-13

tors and technical writers, and for the semi-automatic compilation of lexical resources for14

natural language processing systems (e.g. Heid et al. 2000). The node–collocate view, on15

the other hand, focuses on the predictability of word combinations, i.e. on how a word16

(the node) determines its “company” (the collocates). It is well suited for the linguistic de-17

scription of word meaning and usage in the Firthian tradition, where a node word is char-18

acterised by ranked lists of its collocates (Firth 1957). Following Firth (1957, 195–196)19

and Sinclair (1966), this view has also found wide acceptance in modern corpus-based lex-20

icography (e.g. Sinclair 1991; Kilgarriff et al. 2004), in particular for learner dictionaries21

such as COBUILD (Sinclair 1995) and the Oxford Collocations Dictionary (Lea 2002).11
22

In addition to their “classic” applications in language description, corpus-based lexicog-23

raphy and multiword extraction, collocations and association scores have many practical24

uses in computational linguistics and related fields. Well-known examples include the con-25

struction of machine-readable dictionaries for machine translation and natural language26

generation systems, the improvement of statistical language models, and the use of as-27

sociation scores as features in vector space models of distributional semantics. See Evert28

(2004, 23–27) for an overview and comprehensive references.29

2.2 Collocations as a linguistic epiphenomenon30

The goal of this section is to help readers reach an intuitive understanding of the empirical31

phenomenon of collocations and their linguistic properties. First and foremost, colloca-32

tions are observable facts about language, i.e. primary data. From a strictly data-driven33

perspective, they can be interpreted as empirical predictions about the neighbourhood34

of a word. For instance, a verb accompanying the noun kiss is likely to be either give,35

drop, plant, press, steal, return, deepen, blow or want.12 From the explanatory perspec-36

tive of theoretical linguistics, on the other hand, collocations are best characterised as an37

epiphenomenon: idioms, lexical collocations, clichés, cultural stereotypes, semantic com-38

patibility and many other factors are hidden causes that result in the observed associations39

between words.13
40

10“The collocation of a word or ‘piece’ is not to be regarded as mere juxtaposition, it is an order of mutual
expectancy. The words are mutually expectant and mutually prehended.” (Firth 1957, 181)

11Another example are recent approaches to language teaching, in particular the profiles combinatoires of
Blumenthal et al. (2005).

12This prediction is correct in about a third of all cases. In the British National Corpus, there are 1,003
instances of the noun kiss cooccurring with a lexical verb within a span of 3 words. For 343 of them (= 34%),
the verb is one of the collocates listed above.

13Firth’s description of collocations as “an order of mutual expectancy” (Firth 1957, 181) may seem to
suggest that collocations are pre-fabricated units in which the node “primes” the collocate, and vice versa.
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collocate f ≥ 3 MI

fourteen-record 4 13.31

ten-record 3 13.31

full-track 3 12.89

single-record 5 12.63

randomize 10 10.80

galvanized 4 10.67

groundbait 3 10.04

slop 17 10.03

spade 31 9.41

Nessie 4 9.34

leaky 3 8.59

mop 20 8.57

bottomless 3 8.33
douse 4 8.28

galvanised 3 8.04

oats 7 7.96

shovel 8 7.84

Rhino 7 7.77

synonym 7 7.62

iced 3 7.41

collocate f ≥ 3 simple-ll

water 184 1083.18

a 590 449.30

spade 31 342.31

plastic 36 247.65

size 42 203.36

slop 17 202.30

mop 20 197.68

throw 38 194.66

fill 37 191.44

with 196 171.78

into 87 157.30

empty 27 152.72

and 479 152.19
record 43 151.98

bucket 18 140.88

ice 22 132.78

randomize 10 129.76

of 497 109.33

kick 20 108.08

large 37 88.53

Table 1: Collocates of bucket in the BNC (all words). [extended manuscript only]

In order to gain a better understanding of collocations both as an empirical phe-1

nomenon and as an epiphenomenon, we will now take a look at a concrete example, viz.2

how the noun bucket is characterised by its collocates in the British National Corpus (BNC,3

Aston and Burnard 1998). The data presented here are based on surface cooccurrence4

with a span size of 5 words, delimited by sentence boundaries (see Section 3). Observed5

and expected frequencies were calculated as described in Section 4.1. Collocates were6

lemmatised, and punctuation, symbols and numbers were excluded. Association scores7

were calculated for the measures MI and simple-ll (see Section 4.2).8

The bucket data set was extracted from the British National Corpus (XML Edition), using
the open-source corpus search engine CQP, which is a part of the IMS Corpus Workbench.14

Instances of the node were identified by searching for the base form bucket (according to
the BNC annotation), tagged unambiguously as a noun (NN1 or NN2). Base forms of all
orthographic words (delimited by whitespace and punctuation) within a symmetric span
of 5 words (excluding punctuation) around the node instances were collected. Spans were
further limited by sentence boundaries, and punctuation, other symbols and numbers were
excluded as collocates. Finally, a frequency threshold of f ≥ 3 was applied.

A first observation is that different association measures will produce entirely different9

rankings of the collocates. For the MI measure, the top collocates are fourteen-record, ten-10

record, full-track, single-record, randomize, galvanized, groundbait, slop, spade, Nessie. Most11

of them are infrequent words with low cooccurrence frequency (e.g., groundbait occurs12

only 29 times in the BNC). Interestingly, the first five collocates belong to a technical sense13

of bucket as a data structure in computer science; others such as groundbait and Nessie14

(the name of a character in the novel Worlds Apart, BNC file ATE) are purely acciden-15

tal combinations. By contrast, the top collocates according to the simple-ll measure are16

dominated by high-frequency cooccurrences with very common words, including several17

function words: water, a, spade, plastic, size, slop, mop, throw, fill, with.18

However, as any statistics textbook will point out, association does not imply causality: the occurrences of
both words might be triggered by a hidden third factor, resulting in an indirect association of the word pair.

14See http://cwb.sourceforge.net/.
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noun f simple-ll

water 183 1063.90

spade 31 338.21

plastic 36 242.63

slop 14 197.65

size 41 193.22

mop 16 183.97

record 38 155.64

bucket 18 138.70

ice 22 131.68

seat 20 78.35

coal 16 76.44

density 11 66.78

brigade 10 66.78
algorithm 9 66.54

shovel 7 64.53

container 10 62.40

oats 7 62.32

sand 12 61.91

Rhino 7 60.50

champagne 10 59.28

verb f simple-ll

throw 36 165.32

fill 29 129.69

randomize 9 115.33

empty 14 106.51

tip 10 62.65

kick 12 59.12

hold 31 58.52

carry 26 55.68

put 36 48.69

chuck 7 48.40

weep 7 44.14

pour 9 39.35

douse 4 37.85
fetch 7 35.22

store 7 30.77

drop 9 21.76

pick 11 21.74

use 31 20.93

tire 3 20.58

rinse 3 20.19

adjective f simple-ll

large 37 92.72

single-record 5 79.56

cold 13 52.63

galvanized 4 52.35

ten-record 3 49.75

full 20 46.34

empty 9 36.41

steaming 4 36.37

full-track 2 33.17

multi-record 2 33.17

small 21 30.90

leaky 3 30.14

bottomless 3 29.04
galvanised 3 28.34

iced 3 25.46

clean 7 25.17

wooden 6 24.14

old 19 18.83

ice-cold 2 17.66

anti-sweat 1 16.58

Table 2: Collocates of bucket in the BNC (nouns, verbs and adjectives).

Table 1 shows the 20 highest-ranked collocates according to each association measure, to-
gether with the calculated association scores and raw cooccurrence frequencies (in the col-
umn labelled f). An interesting case is the noun synonym at the bottom of the MI table,
which is both coincidental and related to the technical sense of bucket: 6 of the 7 cooccur-
rences come from a single computer science text (BNC file FPG), whose authors use synonym
as an ad-hoc term for data records stored in the same bucket. The simple-ll table contains a
striking number of function words: a, with, into, and, of.

Although human readers will easily spot some more “interesting” collocates such as kick,
it would be sensible to apply a stop word list in order to remove function words and other
very general collocates (although it can be interesting in some cases to look for collocations
with function words or syntactic constructions, see e.g. Article 43). The highest-ranking
collocates according to simple-ll and restricted to words from lexical categories are water,
spade, plastic, slop, size, mop, throw, fill, empty, record, bucket, ice, randomize, kick, large,
seat and single-record. Clearly, this list gives a much better impression of the usage of the
noun bucket than the unfiltered list above.

A clearer picture emerges when different parts of speech among the collocates (e.g.1

nouns, verbs and adjectives) are listed separately, as shown in Table 2 for the simple-ll2

measure. Ideally, a further distinction should be made according to the syntactic relation3

between node and collocate (node as subject/object of verb, prenominal adjective modify-4

ing the node, head of postnominal of -NP, etc.), similar to the lexicographic word sketches5

of Kilgarriff et al. (2004). Parts of speech provide a convenient approximation that does6

not require sophisticated automatic language processing tools. A closer inspection of the7

lists in Table 2 underlines the status of collocations as an epiphenomenon, revealing many8

different causes that contribute to the observed associations:9

• the well-known idiom kick the bucket, although many of the cooccurrences represent10

a literal reading of the phrase (e.g. It was as if God had kicked a bucket of water over.,11

G0P: 2750);15
12

15A complete listing of the cooccurrences of kick and bucket in the BNC can be found in Appendix A.2. Note
the lower cooccurrence frequency in Table 2 because only collocates with unambiguous part-of-speech tags
were included there.
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• proper names such as Rhino Bucket, a hard rock band founded in 1987;16
1

• both lexicalised and productively formed compound nouns: slop bucket, bucket seat,2

coal bucket, champagne bucket and bucket shop (the 23rd noun collocate);3

• lexical collocations like weep buckets, where buckets has lost its regular meaning and4

acts as an intensifier for the verb;5

• cultural stereotypes and institutionalised phrases such as bucket and spade (which6

people prototypically take along when they go to a beach, even though the phrase7

has fully compositional meaning);8

• reflections of semantic compatibility: throw, carry, kick, tip, take, fetch are typical9

things one can do with a bucket, and full, empty, leaky are some of its typical prop-10

erties (or states);17
11

• semantically similar terms (shovel, mop) and hypernyms (container);12

• facts of life, which do not have special linguistic properties but are frequent simply13

because they describe a situation that often arises in the real world; a prototypical14

example is bucket of water, the most frequent noun collocate in Table 2;18
15

• linguistic relevance: it is more important to talk about full, empty and leaky buckets16

than e.g. about a rusty or yellow bucket; interestingly, old bucket (f = 19) is much17

more frequent than new bucket (f = 3, not shown);19 and18

• “indirect” collocates (e.g. a bucket of cold, warm, hot, iced, steaming water), describ-19

ing typical properties of the liquid contained in a bucket.20
20

Obviously, there are entirely different sets of collocates for each sense of the node word,21

which are overlaid in Table 2. As Firth put it: “there are the specific contrastive colloca-22

tions for light/dark and light/heavy” (Firth 1957, 181). In the case of bucket, a technical23

meaning, referring to a specific data structure in computer science, is conspicuous and ac-24

counts for a considerable proportion of the collocations (bucket brigade algorithm, bucket25

size, randomize to a bucket, store records in bucket, single-record bucket, ten-record bucket).26

In order to separate collocations for different word senses automatically, a sense-tagged27

corpus would be necessary (cf. Article 26).28

16Note that the name was misclassified as a sequence of two common nouns by the automatic part-of-speech
tagging of the BNC.

17Sometimes the connection only becomes clear when a missing particle or other element is added to the
collocate, e.g. pick (up) – bucket.

18Many other examples of facts-of-life collocates can be found in the table, e.g. galvanised, wooden bucket
and bucket of sand, ice, coal.

19It is reasonable to suppose that an empty bucket is a more important topic than a full bucket, but the data
in Table 2 seem to contradict this intuition. This impression is misleading: of the 20 cooccurrences of bucket
and full in the BNC, only 4 refer to full buckets, whereas the remaining 16 are instances of the construction
bucket full of sth. Thus, empty is indeed much more strongly collocated than full as an intersective adjectival
modifier.

20On a side note, the self-collocation (bucket, bucket) in the list of noun collocates is partly a consequence
of term clustering (cf. Article 36), but it also reflects recurrent constructions such as from bucket to bucket and
bucket after bucket.
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adjective-noun f ≥ 5 simple-ll

last year 87 739.76

same time 95 658.47

fiscal year 55 605.25

last night 61 540.72

high school 53 495.26

last week 51 479.03

great deal 43 475.45

dominant stress 31 464.40

nineteenth century 32 462.73

other hand 60 443.24

old man 56 373.96

young man 50 370.57

first time 66 357.51
foreign policy 30 351.24

few days 42 350.72

nuclear weapons 23 325.97

few years 48 325.93

real estate 24 320.51

few minutes 33 303.53

electronic switches 18 298.85

noun-noun f ≥ 5 simple-ll

no one 40 505.32

carbon tetrachloride 18 334.79

wage rate 24 319.65

home runs 25 310.36

anode holder 19 309.42

living room 25 302.75

index words 24 291.31

index word 21 248.62

hearing officer 17 244.55

chemical name 18 242.75

radio emission 16 236.38

oxidation pond 13 234.39

capita income 14 229.86
information cell 18 217.65

station wagon 15 212.49

urethane foam 12 200.74

wash wheel 12 196.14

school districts 16 193.60

urethane foams 11 192.93

interest rates 17 181.42

verb-preposition f ≥ 5 simple-ll

looked at 79 452.88

look at 68 389.72

stared at 33 245.89

look like 32 244.62

depends on 30 217.03

live in 54 216.94

talk about 27 213.40

went into 38 206.36

worry about 21 201.79

looked like 28 198.36

deal with 27 195.40

sat down 20 185.09

account for 24 177.63
serve as 28 169.42

looks like 17 156.15

cope with 18 139.63

came from 39 137.54

do with 70 133.01

look for 37 129.90

fall into 16 129.45

Table 3: Most strongly collocated bigrams in the Brown corpus, categorised into adjective-
noun, noun-noun and verb-preposition bigrams (other bigram types are not shown).
[extended manuscript only]

This example also illustrates a general problem of frequency data obtained from balanced
samples like the British National Corpus (cf. Article 10 for details on the BNC composition).
Collocations related to the computer-science sense of bucket are almost exclusively found in
a single document (BNC file FNR), which is concerned with the relation between bucket size
and data packing density. These collocations may therefore well be specific to the author
or topic of this document, and not characteristic of the typical usage of the noun bucket in
computer science. Another example of accidental cooccurrence is bucket of oats, where 4
out of 6 cooccurrences stem from a text on horse feeding (BNC file ADF).

Observant readers may have noticed that the list of collocations in Table 2 is quite1

similar to the entry for bucket in the Oxford Collocations Dictionary (OCD, Lea 2002).2

This is not as surprising as it may seem at first, since the OCD is also based on the British3

National Corpus as its main source of corpus data (Lea 2002, viii). Obviously, collocations4

were identified with a technique similar to the one used here.5

As a second case study, Table 3 shows the most strongly collocated bigrams in the Brown
corpus (Francis and Kucera 1964) according to the simple-ll measure. For this bigram data
set, pairs of adjacent words were extracted from the Brown corpus, excluding punctuation
and other non-word tokens. As an exception, sentence-ending punctuation (., ! or ?) was
allowed in the second position. A frequency threshold of f ≥ 5 was applied, and the
remaining 24,770 word pairs were ranked according to simple-ll scores. In order to give a
better impression of the underlying linguistic phenomena, the bigrams were categorised by
part-of-speech combination. Only adjective-noun, noun-noun and verb-preposition bigrams
are displayed in Table 3.

3 Cooccurrence and frequency counts6

As has already been stated in Section 1.2, the operationalisation of collocations requires7

a precise definition of the cooccurrence, or “nearness”, of two words (or, more precisely,8

word tokens). Based on this definition, cooccurrence frequency data for each recurrent9
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word pair (or, more precisely, pair of word types) can be obtained from a corpus. Asso-1

ciation scores as a measure of attraction between words are then calculated from these2

frequency data. It will be shown in Section 4.1 that cooccurrence frequency alone is not3

sufficient to quantify the strength of attraction.21 It is also necessary to consider the oc-4

currence frequencies of the individual words, known as marginal frequencies,22 in order to5

assess whether the observed cooccurrences might have come about by chance. In addition,6

a measure of corpus size is needed to interpret absolute frequency counts. This measure7

is referred to as sample size, following statistical terminology.8

The following notation is used in this article: O for the “observed” cooccurrence fre-9

quency in a given corpus (sometimes also denoted by f , especially when specifying fre-10

quency thresholds such as f ≥ 5); f1 and f2 for the marginal frequencies of the first and11

second component of a word pair, respectively; and N for the sample size. These four12

numbers provide the information needed to quantify the statistical association between13

two words, and they are called the frequency signature of the pair (Evert 2004, 36). Note14

that a separate frequency signature is computed for every recurrent word pair (w1, w2) in15

the corpus. The set of all such recurrent word pairs together with their frequency signa-16

tures is referred to as a data set.17

Three different approaches to measuring nearness are introduced below and explained18

with detailed examples: surface, textual and syntactic cooccurrence. For each type of19

cooccurrence, an appropriate procedure for calculating frequency signatures (O, f1, f2, N)20

is described. The mathematical reasons behind these procedures will become clear in21

Section 5. The aim of the present section is to clarify the logic of computing cooccurrence22

frequency data. Practical implementations that can be applied to large corpora use more23

efficient algorithms, especially for surface cooccurrences (e.g. Gil and Dias 2003; Terra24

and Clarke 2004).25

3.1 Surface cooccurrence26

The most common approach in the Firthian tradition defines cooccurrence by surface27

proximity, i.e. two words are said to cooccur if they appear within a certain distance28

or collocational span, measured by the number of intervening word tokens. Surface cooc-29

currence is often, though not always combined with a node–collocate view, looking for30

collocates within the collocational spans around the instances of a given node word.31

Span size is the most important choice that has to be made by the researcher. The most32

common values range from 3 to 5 words (e.g. Sinclair 1991), but many other span sizes33

can be found in the literature. Some studies in computational linguistics have focused on34

bigrams of immediately adjacent words, i.e. a span size of 1 (e.g. Choueka 1988; Schone35

and Jurafsky 2001), while others have used span sizes of dozens or hundreds of words,36

especially in the context of distributional semantics (Schütze 1998).23 Other decisions are37

whether to count only word tokens or all tokens (including punctuation and numbers),38

how to deal with multiword units (does out of count as a single token or as two tokens?),39

and whether cooccurrences are allowed to cross sentence boundaries.40

21For example, the bigrams Rhode Island and to which both occur 100 times in the Brown corpus (based
on the bigram data set described in Section 2.2). The former combination is much more predictable,
though, in the sense that Rhode is more likely to be followed by Island (100 out of its 105 occurrences)
than to by which (100 out of 25,000 occurrences). The precise frequency signatures of the two bigrams are
(100,105,175,909768) for Rhode Island and (101,25106,2766,909768) for to which.

22See Section 5.1 for an explanation of this term.
23Schütze (1998) used symmetric spans with a total size of 50 tokens, i.e. 25 tokens to the left and 25 to

the right.
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A vast deal of coolness and a peculiar degree of judgement, are requisite in catching a hat . A man must

not be precipitate, or he runs over it ; he must not rush into the opposite extreme, or he loses it

altogether. [. . . ] There was a fine gentle wind, and Mr. Pickwick’s hat rolled sportively before it . The

wind puffed, and Mr. Pickwick puffed, and the hat rolled over and over as merrily as a lively porpoise

in a strong tide ; and on it might have rolled, far beyond Mr. Pickwick’s reach, had not its course been

providentially stopped, just as that gentleman was on the point of resigning it to its fate.

Figure 1: Illustration of surface cooccurrence for the word pair (hat, roll).

Figure 1 shows surface cooccurrences between the words hat (in bold face, as node)1

and the collocate roll (in italics, as collocate). The span size is 4 words, excluding punc-2

tuation and limited by sentence boundaries. Collocational spans around instances of the3

node word hat are indicated by brackets below the text.24 There are two cooccurrences in4

this example, in the second and third span, hence O = 2. Note that multiple instances of a5

word in the same span count as multiple cooccurrences, so for hat and over we would also6

calculate O = 2 (with both cooccurrences in the third span). The marginal frequencies7

of the two words are given by their overall occurrence counts in the text, i.e. f1 = 3 for8

hat and f2 = 3 for roll. The sample size N is simply the total number of tokens in the9

corpus, counting only tokens that are relevant to the definition of spans. In our example,10

N is the number of word tokens excluding punctuation, i.e. N = 111 for the text shown in11

Figure 1. If we include punctuation tokens in our distance measurements, the sample size12

would accordingly be increased to N = 126 (9 commas, 4 full stops and 2 semicolons).13

The complete frequency signature for the pair (hat, roll) is thus (2,3,3,111). Of course,14

realistic data will have much larger sample sizes, and the marginal frequencies are usually15

considerably higher than the cooccurrence frequency.16

Collocational spans can also be asymmetric, and are generally written in the form (Lk,17

Rn) for a span of k tokens to the left of the node word and n tokens to its right. The18

symmetric spans in the example above would be described as (L4, R4). Asymmetric spans19

introduce an asymmetry between node word and collocate that is absent from most other20

approaches to collocations. For a one-sided span (L4, R0) to the left of the node word,21

there would be 2 cooccurrences of the pair (roll, hat) in Figure 1, but none of the pair (hat,22

roll). A special case are spans of the form (L0, R1), where cooccurrences are ordered pairs23

of immediately adjacent words, often referred to as bigrams in computational linguistics.24

Thus, took place would be a bigram cooccurrence of the lemma pair (take, place), but25

neither place taken nor take his place would count as cooccurrences.26

3.2 Textual cooccurrence27

A second approach considers words to cooccur if they appear in the same textual unit.28

Typically, such units are sentences or utterances, but with the recent popularity of Google29

searches and the Web as corpus (see Article 18), cooccurrence within (Web) documents30

has found more widespread use.31

One criticism against surface cooccurrence is the arbitrary choice of the span size. For32

a span size of 3, throw a birthday party would be accepted as a cooccurrence of (throw,33

party), but throw a huge birthday party would not. This is particularly counterintuitive for34

languages with relatively free word order, where closely related words can be far apart35

at the surface.25 In such languages, textual cooccurrence within the same sentence may36

24All text samples in this section have been adapted from the novel The Pickwick Papers by Charles Dickens.
25Consider the German collocation (einen) Blick zuwerfen, which cooccurs at a distance of 16 words in the
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provide a more appropriate collocational span. Textual cooccurrence also captures weaker1

dependencies, in particular those caused by paradigmatic semantic relations. For example,2

if an English sentence contains the noun bucket, it is quite likely to contain the noun mop3

as well (although the connection is far weaker than for water or spade), but the two nouns4

will not necessarily be near each other in the sentence.5

A vast deal of coolness and a peculiar degree of judgement, are
requisite in catching a hat.

hat —

A man must not be precipitate, or he runs over it ; — over

he must not rush into the opposite extreme, or he loses it
altogether.

— —

There was a fine gentle wind, and Mr. Pickwick’s hat rolled
sportively before it.

hat —

The wind puffed, and Mr. Pickwick puffed, and the hat rolled
over and over as merrily as a lively porpoise in a strong tide ;

hat over

Figure 2: Illustration of textual cooccurrence for the word pair (hat, over).

The definition of textual cooccurrence and the appropriate procedure for computing6

frequency signatures are illustrated in Figure 2, for the word pair (hat, over) and sentences7

as textual segments. There is one cooccurrence of hat and over in the last sentence of this8

text sample, hence O = 1. In contrast to surface cooccurrence, the count is 1 even though9

there are two instances of over in the sentence. Similarly, the marginal frequencies are10

given by the number of sentences containing each word, ignoring multiple occurrences in11

the same sentence: hence f1 = 3 and f2 = 2 (although there are three instances each of12

hat and over in the text sample). The sample size N = 5 is the number of sentences in13

this case. The complete frequency signature of (hat, over) is thus (1,3,2,5), whereas for14

surface cooccurrence within the spans shown in Figure 1 it would have been (2,3,3,79).15

The most intuitive procedure for calculating frequency signatures is the method shown in
Figure 2. Each sentence is written on a separate line and marked for occurrences of the two
words in question. The marginal frequencies and the cooccurrence frequency can then be
read off directly from this table of yes/no marks (shown to the right of the vertical line).
In principle, the same procedure has to be repeated for every word pair of interest, but
more efficient implementations pass through the corpus only once, generating frequency
signatures for all recurrent word pairs in parallel.

3.3 Syntactic cooccurrence16

In this more restrictive approach, words are only considered to be near each other if17

there is a direct syntactic relation between them. Examples are a verb and its object18

(or subject) noun, prenominal adjectives (in English and German) and nominal modifiers19

(the pattern N of N in English, genitive noun phrases in German). Sometimes, indirect20

relations might also be of interest, e.g. a verb and the adjectival modifier of its object21

noun, or a noun and the adjective modifying a postnominal of -NP. The latter pattern22

sentence Der Blick voll inniger Liebe und Treue, fast möchte ich sagen Hundetreue, welchen er mir dabei zaghaft
zuwarf, drang mir tief zu Herzen. (Karl May, In den Schluchten des Balkan).
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accounts for several surface collocations of the noun bucket such as a bucket of iced, cold,1

steaming water (cf. Table 2). Collocations for different types of syntactic relations are2

usually treated separately. From a given corpus, one might extract a data set of verbs and3

their object nouns, another data set of verbs and subject nouns, a data set of adjectives4

modifying nouns, etc. Syntactic cooccurrence is particularly appropriate if there may be5

long-distance dependencies between collocates: unlike surface cooccurrence, it does not6

set an arbitrary distance limit, but at the same time introduces less “noise” than textual7

cooccurrence.26 Syntactic cooccurrence is often used for multiword extraction, since many8

types of lexicalised multiword expressions tend to appear in specific syntactic patterns such9

as verb + object noun, adjective + noun, adverb + verb, verb + predicated adjective,10

delexical verb + noun, etc. (see Bartsch 2004, 11).27
11

 

In an open barouche [. . . ] stood a stout old gentleman, in a blue coat

and bright buttons, corduroy breeches and top-boots ; two

young ladies in scarfs and feathers ; a young gentleman apparently

enamoured of one of the young ladies in scarfs and feathers ; a lady

of doubtful age, probably the aunt of the aforesaid ; and [. . . ]

➜

open barouche

stout gentleman

old gentleman
blue coat

bright button
young lady

young gentleman

young lady
doubtful age

Figure 3: Illustration of syntactic cooccurrence (nouns modified by prenominal adjectives).

Frequency signatures for syntactic cooccurrence are obtained in a more indirect way,12

illustrated in Figure 3. First, all instances of the desired syntactic relation are identified,13

in this case modification of nouns by prenominal adjectives. Then the corresponding ar-14

guments are compiled into a list with one entry for each instance of the syntactic relation15

(shown on the right of Figure 3). Note that the list entries are lemmatised here, but e.g.16

case-folded word forms could have been used as well. Just as the original corpus is under-17

stood as a sample of language, the list items constitute a sample of the targeted syntactic18

relation, and Evert (2004) refers to them as “pair tokens”. Cooccurrence frequency data19

are computed from this sample, while all word tokens that do not occur in the relation20

of interest are disregarded. For the word pair (young, gentleman), we find one cooccur-21

rence in the list of pair tokens, i.e. O = 1. The marginal frequencies are given by the total22

numbers of entries containing one of the component words, f1 = 3 and f2 = 3, and the23

sample size is the total number of list entries, N = 9. The frequency signature of (young,24

gentleman) as a syntactic adjective-noun cooccurrence is thus (1,3,3,9).25

26In the German example Der Blick voll inniger Liebe und Treue, fast möchte ich sagen Hundetreue, welchen er
mir dabei zaghaft zuwarf, drang mir tief zu Herzen., syntactic verb-object cooccurrence would identify the word
pair (Blick, zuwerfen) correctly, without introducing spurious cooccurrences between all nouns and verbs in
the sentence, i.e. (Liebe, zuwerfen), (Liebe, sagen), (Treue, zuwerfen), (Treue, sagen), etc.

27In her working definition of collocations, which combines aspects of both empricial collocations and
multiword expressions, Bartsch explicitly requires collocates to stand in a direct syntactic relation (Bartsch
2004, 70f).
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Note that all counts are based on instances of syntactic relations. Thus, the marginal fre-
quency of gentleman is 3 although the word occurs only twice in the text: the first occur-
rences enters into two syntactic relations with the adjectives stout and old. Conversely, the
marginal frequency of lady is 2 because its third occurrence (in the last sentence) is not
modified by an adjective. Depending on the goal of a collocation study, it might make sense
to include such non-modified nouns by introducing entries with “null modifiers” into the list
of pair tokens. Some nouns might then be found to collocate strongly with the null modifier.

Bigrams can also be seen as syntactic cooccurrences, where the relation between the
words is immediate precedence at the surface (i.e., linear ordering is considered to be part
of the syntax of a language). Frequency signatures of bigrams according to syntactic cooc-
currence are very similar to those calculated according to the procedure for (L0, R1) surface
cooccurrence.

3.4 Comparison1

Collocations according to surface cooccurrence have proven useful in corpus-linguistic and2

lexicographic research (cf. Sinclair 1991). They strike a balance between the restricted3

notion of syntactic cooccurrence (esp. when only a single type of syntactic relation is4

considered) and the very broad notion of textual cooccurrence. The number of recurrent5

word pairs extracted from a corpus is also more manageable than for textual cooccurrence.6

In this respect, syntactic cooccurrence is even more practical. A popular application of7

surface cooccurrence in computational linguistics are word space models of distributional8

semantics (Schütze 1998; Sahlgren 2006). As an alternative to the surface approach,9

Kilgarriff et al. (2004) collect syntactic collocates from different types of syntactic relations10

and display them as a word sketch of the node word.11

Textual cooccurrence is easier to implement than surface cooccurrence, and more ro-12

bust against certain types of non-randomness such as term clustering, especially when13

the textual units used are entire documents (cf. the discussion of non-randomness in Ar-14

ticle 36). However, it tends to create huge data sets of recurrent word pairs that can be15

challenging even for powerful modern computers.16

Syntactic cooccurrence separates collocations of different syntactic types, which are17

overlaid in frequency data according to surface cooccurrence, and discards many indirect18

and accidental cooccurrences. It should thus be easier to find suitable association mea-19

sures to quantify the collocativity of word pairs. Evert (2004, 19) speculates that different20

measures might be appropriate for different types of syntactic relations. Syntactic cooc-21

currence is arguably most useful for the identification of multiword expressions, which22

are typically categorised according to their syntactic structure. However, it requires an23

accurate syntactic analysis of the source corpus, which will have to be performed with24

automatic tools in most cases. For prenominal adjectives, the analysis is fairly easy in25

English and German (Evert and Kermes 2003), while for German verb-object relations,26

it is extremely difficult to achieve satisfactory results: recent syntactic parsers achieve27

dependency F-scores of 70%–75% (Schiehlen 2004).28 Outspoken advocates of syntac-28

tic cooccurrence include Daille (1994), Goldman et al. (2001), Bartsch (2004) and Evert29

(2004).30

Leaving such practical and philosophical considerations aside, frequency signatures31

computed according to the different types of cooccurrence can disagree substantially for32

28As an additional compliciation, it would often be more appropriate to consider the “logical” (or “deep”)
objects of verbs, i.e. grammatical subjects for verbs in passive voice and grammatical objects for verbs in
active voice. Both eat humble pie and much humble pie had to be eaten should be identified as a verb-object
cooccurrence of (eat, humble pie).
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the same word pair. For examples, the frequency signatures of (short, time) in the Brown1

corpus are: (16,135,457,59710) for syntactic cooccurrence (of prenominal adjectives),2

(27,213,1600,1170811) for (L5, R5) surface cooccurrence, and (32,210,1523,52108) for3

textual cooccurrence within sentences.29
4

4 Simple association measures5

4.1 Expected frequency6

It might seem natural to use the cooccurrence frequency O as an association measure to7

quantify the strength of collocativity (e.g. Choueka 1988). This is not sufficient, however;8

the marginal frequencies of the individual words also have to be taken into account. To9

illustrate this point, consider the following example. In the Brown corpus, the bigram is to10

is highly recurrent. With O = 260 cooccurrences it is one of the most frequent bigrams in11

the corpus. However, both components are frequent words themselves: is occurs roughly12

10,000 times and to roughly 26,000 times among 1 million word tokens.30 If the words in13

this corpus were rearranged in completely random order, thereby removing all associations14

between cooccurring words, we would still expect to see the sequence is to approx. 26015

times. The high cooccurrence frequency of is to does therefore not constitute evidence for16

a collocation; on the contrary, it indicates that is and to are not attracted to each other at17

all. The expected number of cooccurrences for a completely “uncollocational” word pair18

has been derived by the following reasoning: to occurs 26 times every 1,000 words on19

average. If there is no association between is and to, then each of the 10,000 instances20

of is in the Brown corpus has a chance of 26/1,000 to be followed by to.31 Therefore,21

we expect around 10,000 × (26/1,000) = 260 occurrences of the bigram is to, provided22

that there is indeed no association between the words. Of course, even in a perfectly23

randomised corpus there need not be exactly 260 cooccurrences: statistical calculations24

compute averages across large numbers of samples (formally called expectations), while25

the precise value in a corpus is subject to unpredictable random variation (see Article26

36).32
27

The complete absence of association, as between words in a randomly shuffled corpus,28

is called independence in mathematical statistics. What we have calculated above is the29

expected value for the number of cooccurrences in a corpus of 1 million words, under the30

null hypothesis that is and to are independent. In analogy to the observed frequency O of31

a word pair, the expected value under the null hypothesis of independence is denoted E32

and referred to as the expected frequency of the word pair. Expected frequency serves as33

a reference point for the interpretation of O: the pair is only considered collocational if34

the observed cooccurrence frequency is substantially greater than the expected frequency,35

29Prenominal adjectives were identified with the CQP query [pos="JJ.*"] (",|and|or"?
[pos="RB.*"]* [pos="JJ.*"]+)* [pos="NN.*"] (in “traditional” matching mode), which gives a rea-
sonably good approximation of a full syntactic analysis. The surface distance measure included all tokens
(also punctuation etc.), so that the frequency counts could easily be obtained from CQP.

30The precise marginal frequencies in the bigram data set are 9,775 for is and 24,814 for to, with a sample
size of N = 909,768 tokens. This results in an expected frequency of E = 266.6 chance cooccurrences, slightly
higher than the observed frequency O = 260.

31This is particularly clear if one assumes that the words have been rearranged in random order, as we have
done above. In this case, each instance of is is followed by a random word, which will be to in 26 out of 1,000
cases.

32As a point of interest, we could also have calculated the expectation the other way round: each of the
26,000 instances of to has a chance of 10/1,000 to be preceded by is, resulting in the same expectation of
260 cooccurrences.
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Figure 4: A selection of simple association measures.

O � E. Using the formal notation of Section 3, the marginal frequencies of (is, to) are1

f1 = 10,000 and f2 = 26,000. The sample size is N = 1,000,000 tokens, and the observed2

frequency is O = 260. Expected frequency is thus given by the equation E = f1 · (f2/N) =3

f1f2
N = 260. While the precise calculation of expected frequency is different for each type4

of cooccurrence, it always follows the basic scheme f1f2/N.33
5

For textual and syntactic cooccurrence, the standard formula E = f1f2/N can be used6

directly. For surface cooccurrence, an additional factor k represents the total span size,7

i.e. E = kf1f2/N. This factor is k = 10 for a symmetric span of 5 words (L5, R5), k = 48

for a span (L3, R1), and k = 1 for simple bigrams (L0, R1).9

Intuitively, for every instance of the node w1 there are k “slots” in which w2 might cooccur
with w1. Under the null hypothesis, there is a chance of f2/N to find w2 in each one of these
slots. With a total of kf1 slots, we expect kf1 · (f2/N) cooccurrences. Note that according
to this equation, expected frequency E is symmetric, i.e. it will be the same for (w1, w2) and
(w2, w1), while O may be different for asymmetric spans.

This equation for E is only correct if (i) spans are not limited by sentence boundaries
and (ii) the spans of different instances of w1 do not overlap. Otherwise, the total number of
slots for cooccurrences with w2 is smaller than kf1, and it would be necessary to determine
its precise value by scanning the corpus. This procedure has to be repeated for every distinct
first component w1 among the word pairs in a data set. Fortunately, the error introduced
by our approximation is usually small and unproblematic unless very large span sizes are
chosen, so the simple equation above can be used in most cases.

4.2 Essential association measures10

A simple association measure interprets observed cooccurrence frequency O by comparison11

with the expected frequency E, and calculates an association score as a quantitative mea-12

sure for the attraction between two words. The most important and widely-used simple13

association measures are shown in Figure 4. In the following paragraphs, their mathemat-14

ical background and some important properties will be explained.15

The most straightforward and intuitive way to relate O and E is to use the ratio O/E16

as an association measure. For instance, O/E = 10 means that the word pair cooccurs17

10 times more often than would be expected by chance, indicating a certain degree of18

collocativity.34 Since the value of O/E can become extremely high for large sample size19

(because E � 1 for many word pairs), it is convenient and sensible to measure association20

on a (base-2) logarithmic scale. This measure can also be derived from information theory,21

33Some of the differences have already been accounted for by computing frequency signatures in an appro-
priate way, as described in Section 3.

34Taking the difference O−E might seem equally well justified at first, but turns out to be much less intuitive
than the ratio measure: a word pair with O = 100 and E = 10 would be assigned a much higher score than a
pair with O = 10 and E = 1, in contrast to the intuitively appealing view that both are 10 times more frequent
than expected by chance.
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where it is interpreted as the number of bits of “shared information” between two words1

and known as (pointwise) mutual information or simply MI (Church and Hanks 1990, 23).2

A MI value of 0 bits corresponds to a word pair that cooccurs just as often as expected by3

chance (O = E); 1 bit means twice as often (O = 2E), 2 bits mean 4 times as often, 10 bits4

about 1000 times as often, etc. A negative MI value indicates that a word pair cooccurs5

less often than expected by chance: half as often for −1 bit, a quarter as often for −2 bits,6

etc. Thus, negative MI values constitute evidence for a “repulsion” between two words,7

the pair forming an anti-collocation.35
8

The MI measure exemplifies two general conventions for association scores that all asso-9

ciation measures should adhere to. (i) Higher scores indicate stronger attraction between10

words, i.e. a greater degree of collocativity. In particular, repulsion, i.e. O < E, should re-11

sult in very low association scores. (ii) Ideally, an association measure should distinguish12

between positive association (O > E) and negative association (O < E), assigning positive13

and negative scores, respectively. A strong negative association would thus be indicated14

by a large negative value. As a consequence, the null hypothesis of independence corre-15

sponds to a score of 0 for such association measures. It is easy to see that MI satisfies both16

conventions: the more O exceeds E, the larger the association score will be; for O = E,17

the MI value is log2 1 = 0. Most, though not all association measures follow at least the18

first convention (we will shortly look at an important exception in the form of the simple-ll19

measure).20

In practical applications, MI was found to have a tendency to assign inflated scores21

to low-frequency word pairs with E � 1, especially for data from large corpora.36 Thus,22

even a single cooccurrence of two word types might result in a fairly high association score.23

In order to counterbalance this low-frequency bias of MI, various heuristic modifications24

have been suggested. The most popular one multiplies the denominator with O in order25

to increase the influence of observed cooccurrence frequency compared to the expected26

frequency, resulting in the formula log2

(
O2/E

)
. Multiplication with O can be repeated to27

strengthen the counterbalancing effect, leading to an entire family of measures MIk with28

k ≥ 1, as shown in Figure 4. Common choices for the exponent are k = 2 and k = 3. Daille29

(1994) has systematically tested values k = 2, . . . ,10 and found k = 3 to work best for30

her purposes. An alternative way to reduce the low-frequency bias of MI is to multiply the31

entire formula with O, resulting in the local-MI measure. Unlike the purely heuristic MIk32

family, local-MI can be justified by an information-theoretic argument (Evert 2004, 89)33

and its value can be interpreted as bits of information. Although not immediately obvious34

from its equation, local-MI fails to satisfy the first convention for association scores in the35

case of strong negative association: for fixed expected frequency E, the score reaches a36

minimum at O = E/ exp(1) and then increases for smaller O. Local-MI distinguishes37

between positive and negative association, though, and satisfies both conventions if only38

word pairs with positive association are considered. The measures MIk satisfy the first39

convention, but violate the second convention for all k > 1.37
40

It has been pointed out above that MI assigns high association scores whenever O41

exceeds E by a large amount, even if the absolute cooccurrence frequency is as low as42

O = 1 (and E � 1). In other words, MI only looks at what is known as effect size in43

statistics and does not take into account how much evidence the observed data provide. We44

will return to the distinction between effect-size measures and evidence-based measures45

in Section 6. Here, we introduce three simple association measures from the latter group.46

35See the remarks on anti-collocations in Section 7.1.
36Imagine a word pair (w1, w2) where both words occur 10 times in the corpus. For a sample size of

N = 1,000, the expected frequency is E = 0.1, for a sample size of N = 1,000,000, it is only E = 0.0001.
37In the case of independence, i.e. O = E, MIk assigns the score (k − 1) · log2 O.
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A z-score is a standardised measure for the amount of evidence provided by a sample1

against a simple null hypothesis such as O = E (see Article 36). In our case, the general2

rule for calculating z-scores leads to the equation shown in Figure 4.38 Z-scores were first3

used by Dennis (1965, 69) as an association measure, and later by Berry-Rogghe (1973,4

104). They distinguish between positive and negative association: O > E leads to z > 05

and O < E to z < 0. Z-scores can be interpreted by comparison with a standard normal6

distribution, providing theoretically motivated cut-off thresholds for the identification of7

“true collocations”. An absolute value |z| > 1.96 is generally considered sufficient to8

reject the null hypothesis, i.e. to provide significant evidence for a (positive or negative)9

association; a more conservative threshold is |z| > 3.29. When used as an association10

measure, z-score tends to yield much larger values, though, and most word pairs in a11

typical data set are highly significant. For instance, 80% of all distinct word bigrams in the12

Brown corpus have |z| > 1.96, and almost 70% have |z| > 3.29.39 Recent studies avoid13

standard thresholds and use z-scores only to rank word pairs or select n-best lists.14

Authors using theoretical thresholds sometimes speak of “significant collocation” (Sinclair
1966, 418) or “significant word pairs” (e.g. Zinsmeister and Heid 2003). Since only a small
proportion of the recurrent word pairs is rejected by such tests, the traditional concept
of significance obviously has little meaning for collocation identification tasks. Therefore,
use of these terms is strongly discouraged. Note that we still refer to z-score and related
association measures as “significance measures” because of their mathematical background.

A fundamental problem of the z-score measure is the normal approximation used in15

its mathematical derivation, which is valid only for sufficiently high expected frequency E.16

While there is no clearly defined limit value,40 the approximation becomes very inaccurate17

if E < 1, which is often the case for large sample sizes (e.g., 89% of all bigrams in the18

Brown corpus have E < 1).41 Violation of the normality assumption leads to highly inflated19

z-scores and a low-frequency bias similar to the MI measure.42 In order to avoid this low-20

frequency bias, various other significance measures have been suggested, based on more21

“robust” statistical tests. One possibility is the t-score measure, which replaces E in the22

denominator of z-score by O.43 This measure has been widely used in computational23

38For the mathematically inclined, and those who have read Article 36 carefully, this equation assumes
that the observed frequency O is a binomially distributed random variable with sample size N and success
probability p = E/N under the null hypothesis (this ensures that the expected value of O equals E). The
binomial distribution is then approximated by a normal distribution with mean µ = Np = E and variance
σ2 = Np(1 − p) ≈ E. For a normally distributed random variable, the z-score corresponding to an observed
value O is given by z = (O − µ)/σ = (O − E)/

√
E.

39Bigrams of adjacent words, using case-folded word forms and excluding punctuation except for sentence-
ending punctuation as second component of the bigram. No frequency threshold was applied. Out of 368,210
distinct bigrams of this type found in the Brown corpus, 296,320 (= 80.5%) have |z| > 1.96 and 251,590
(= 68.3%) have |z| > 3.29. If data are restricted to the 93,205 recurrent bigrams (f ≥ 2), there are still
73,431 items (= 78.8%) with |z| > 1.96 and 59,748 items (= 64.1%) with |z| > 3.29. In most cases, there is
significant evidence for a positive association: 71,790 (= 77.0%) with z > 1.96 and 58,923 (= 63.2%) with
z > 3.29.

40Article 36 suggests a very conservative threshold of E > 9, while many other authors feel that the normal
approximation is sufficiently accurate for expected frequencies as small as E = 1.

41Bigrams of adjacent words as described above, with 327,998 out of 368,210 bigrams (= 89.1%) satisfying
E < 1. For recurrent bigrams (f ≥ 2), 63,551 out of 93,205 bigrams (= 68.2%) have E < 1.

42The low-frequency bias of the z-score measure is in part due to the fact that word pairs with higher
cooccurrence frequency are less likely to satisfy E < 1 and hence generate inflated z-scores. Out of 10,339
bigrams with cooccurrence frequency O ≥ 10 in the Brown corpus, only 1,997 (= 19.3%) have E < 1.

43Intuitively, it is straightforward to see how t-score reduces the low-frequency bias. For E < 1, the denom-
inator of z-score becomes less than 1 so that the difference O−E is inflated, while the denominator of t-score
is always greater than (or equal to) 1.
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lexicography following its introduction into the field by Church et al. (1991, Sec. 2.2). See1

Evert (2004, 82–83) for a criticism of its derivation from the statistical t test, which is2

entirely inappropriate for corpus frequency data.3

Dunning (1993) advocated the use of likelihood-ratio tests, which are also more robust4

against low expected frequencies than z-score. For a simple measure comparing O and5

E, the likelihood-ratio procedure leads to the simple-ll equation in Figure 4.44 It can6

be shown that simple-ll scores are always non-negative and violate both conventions for7

association scores. Because the underlying likelihood-ratio test is a two-sided test, the8

measure does not distinguish between O � E and O � E, assigning high positive scores9

in both cases. This detail is rarely mentioned in publications and textbooks and may easily10

be overlooked.45 A general procedure can be applied to convert a two-sided association11

measure like simple-ll into a one-sided measure that satisfies both conventions: association12

scores are calculated in the normal way and then multiplied with −1 for all word pairs13

with O < E. This procedure is applicable if association scores of the two-sided measure14

are always non-negative and high scores are assigned to strong negative associations. For15

the resulting transformed measure, significance is indicated by the absolute value of an16

association score, while positive and negative association are distinguished by its sign.46
17

Similar to the z-score measure, simple-ll measures significance (i.e. the amount of18

evidence against the null hypothesis) on a standardised scale, known as a chi-squared19

distribution with one degree of freedom, or χ2
1 for short. Theoretically motivated cut-off20

thresholds corresponding to those for z-scores are |ll| > 3.84 and |ll| > 10.83, but the21

same reservations apply: many word pairs achieve scores far above these thresholds, so22

that they are not a meaningful criterion for the identification of “true collocations”.23

Article 36 gives detailed explanations of statistical concepts such as significance, effect24

size, hypothesis test, one-sided vs. two-sided test, z-score and normal distribution that have25

been used in this section.26

4.3 Simple association measures in a nutshell27

The preceding section has introduced a basic selection of simple association measures.28

These measures quantify the “attraction” between two words, i.e. their statistical associa-29

tion, by comparing observed cooccurrence frequency O against E, the expected frequency30

under the null hypothesis of independence (i.e. complete absence of association). E is31

important as a reference point for the interpretation of O, since two frequent words might32

cooccur quite often purely by chance. Most association measures follow the convention33

that higher association scores indicate stronger (positive) association. Many measures34

also differentiate between positive association (O > E), indicated by positives scores, and35

negative association (O < E), indicated by negative scores. Two-sided measures fail to36

make any distinction between positive and negative association, but can be converted into37

one-sided measures with an explicit test for O > E.38

44The derivation of the simple-ll measure assumes O to follow a Poisson distribution with expected value
E, a close approximation to the correct binomial distribution for large samples. See Appendix A.1 for details.
Note the striking similarity to local-MI: apart from the additional term (O − E), simple-ll uses a natural
logarithm (log) instead of the base-2 logarithm (log2). This, and the constant factor of 2 are important for the
interpretation of simple-ll scores according to a standardised scale of significance (viz., the χ2

1 distribution).
45A typical example is Manning and Schütze (1999, 173), who also fail to mention the simple explicit form

of log-likelihood for contingency tables shown in Figure 9.
46Note that the term “two-sided measure” is reserved for association measures derived from two-sided

statistical tests. For instance, simple-MI is not a two-sided measure in this sense (although it fails to satisfy
the first convention, too), and the general procedure for conversion to a one-sided measure cannot be applied.
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The association measures listed in Figure 4 offer a number of different angles on col-1

locativity that are sufficient for many purposes. Except for the heuristic MIk family, all2

measures have theoretical motivations, allowing a meaningful interpretation of the com-3

puted association scores. As has been exemplified with the standard z-score thresholds,4

one should not put too much weight on such interpretations, though. Cooccurrence data5

do not always satisfy the assumptions made by statistical hypothesis tests, and heuristic6

measures may be just as appropriate.7

Association measures can be divided into two general groups: measures of effect size8

(MI and MIk) and measures of significance (z-score, t-score and simple-ll). The former9

ask the question “how strongly are the words attracted to each other?” (operationalised10

as “how much does observed cooccurrence frequency exceed expected frequency?”), while11

the latter ask “how much evidence is there for a positive association between the words, no12

matter how small effect size is?” (operationalised as “how unlikely is the null hypothesis13

that the words are independent?”). The two approaches to measuring association are not14

entirely unrelated: a word pair with large “true” effect size is also more likely to show sig-15

nificant evidence against the null hypothesis in a sample. However, there is an important16

difference between the two groups. Effect-size measures typically fail to account for sam-17

pling variation and are prone to a low-frequency bias (small E easily leads to spuriously18

high effect size estimates, even for O = 1 or O = 2), while significance measures are often19

prone to a high-frequency bias (if O is sufficiently large, even a small relative difference20

between O and E, i.e. a small effect size, can be highly significant).21

Of the significance measures shown in Figure 4, simple-ll is the most accurate and22

robust choice. Z-score has a strong low-frequency bias because the approximations used in23

its derivation are not valid for E < 1, while t-score has been derived from an inappropriate24

hypothesis test. Nonetheless, t-score has proven useful for certain applications, especially25

the identification of certain types of multiword expressions (see Section 6.2). It has to be26

kept in mind that simple-ll is a two-sided measure and assigns high scores both to positive27

and negative associations. If only positive associations are of interest (as is the case for28

most studies), then word pairs with O < E should be discarded. Alternatively, simple-ll29

can be transformed into a one-sided measure that satisfies both conventions for association30

scores (by multiplying scores with −1 if a word pair has O < E).31

Association measures with a background in information theory take a different ap-32

proach, which at first sight seems appropriate for the interpretation of collocations as33

mutually predictable word combinations (e.g. Sinclair 1966, 414). They ask the question34

to what extent the occurrences of a word w1 determine the occurrences of another word35

w2, and vice versa, based on the information-theoretic notion of mutual information (MI).36

Interestingly, different variants of MI lead to measures with entirely different properties:37

pointwise MI is a measure of effect size, while local-MI is very similar to simple-ll and38

hence has to be considered a measure of significance.39

It is probably impossible to choose a single most appropriate association measure (cf.40

the discussion in Section 6). The recommended strategy is therefore to apply simple-ll,41

t-score and MI as proven association measures with well-understood mathematical prop-42

erties, in order to obtain three entirely different perspectives on the cooccurrence data.43

MI should always be combined with a frequency threshold to counteract its low-frequency44

bias. As an example, and to illustrate the different properties of these association mea-45

sures, Table 4 shows the collocates of bucket in the British National Corpus (following the46

case study in Section 2.2), according to simple-ll, t-score, MI without frequency threshold,47

and MI with an additional frequency threshold of f ≥ 5. Table 5 gives a second example48
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collocate f f2 simple-ll

water 184 37012 1083.18

a 590 2164246 449.30

spade 31 465 342.31

plastic 36 4375 247.65

size 42 14448 203.36

slop 17 166 202.30

mop 20 536 197.68

throw 38 11308 194.66

fill 37 10722 191.44

with 196 658584 171.78

collocate f f2 MI

fourteen-record 4 4 13.31

ten-record 3 3 13.31

multi-record 2 2 13.31

two-record 2 2 13.31

a-row 1 1 13.31

anti-sweat 1 1 13.31

axe-blade 1 1 13.31

bastarding 1 1 13.31

dippermouth 1 1 13.31
Dok 1 1 13.31

collocate f f2 t-score

a 590 2164246 15.53

water 184 37012 13.30

and 479 2616723 10.14

with 196 658584 9.38

of 497 3040670 8.89

the 832 6041238 8.26

into 87 157565 7.67

size 42 14448 6.26

in 298 1937966 6.23

record 43 29404 6.12

collocate f ≥ 5 f2 MI

single-record 5 8 12.63

randomize 10 57 10.80

slop 17 166 10.03

spade 31 465 9.41

mop 20 536 8.57

oats 7 286 7.96

shovel 8 358 7.83

rhino 7 326 7.77

synonym 7 363 7.62
bucket 18 1356 7.08

Table 4: Collocates of bucket in the BNC according to the association measures simple-ll,
t-score, MI, and MI with frequency threshold f ≥ 5.

bigram f ≥ 10 f1 f2 simple-ll

of the 9702 34036 58451 13879.8

in the 6018 19615 58451 9302.3
it is 1482 8409 9415 5612.9

on the 2459 5990 58451 4972.9
United States 395 480 600 4842.6

it was 1338 8409 9339 4831.2

to be 1715 25106 6275 4781.1
had been 760 5107 2460 4599.8

have been 650 3884 2460 4084.0

has been 567 2407 2460 3944.9

bigram f ≥ 10 f1 f2 MI

Hong Kong 11 11 11 16.34
gon na 16 16 16 15.80

Viet Nam 14 16 14 15.80

Simms Purdew 12 16 12 15.80
Pathet Lao 10 10 17 15.71

El Paso 10 19 11 15.41
Lo Shu 21 21 21 15.40

Puerto Rico 21 24 21 15.21

unwed mothers 10 12 26 14.83
carbon tetrachloride 18 30 19 14.81

bigram f ≥ 10 f1 f2 t-score

of the 9702 34036 58451 76.30

in the 6018 19615 58451 61.33
on the 2459 5990 58451 41.83

to be 1715 25106 6275 37.23
it is 1482 8409 9415 36.24

it was 1338 8409 9339 34.22

at the 1654 5032 58451 32.72
to the 3478 25106 58451 31.62

from the 1410 4024 58451 30.66

he was 1110 9740 9339 30.32

bigram f ≥ 50 f1 f2 MI

Los Angeles 50 51 50 14.12
Rhode Island 100 105 175 12.27

Peace Corps 55 171 109 11.39

per cent 146 371 155 11.17
United States 395 480 600 10.29

President Kennedy 54 374 156 9.72
years ago 138 793 246 9.33

fiscal year 58 118 701 9.32

New York 303 1598 309 9.12
United Nations 51 480 175 9.11

Table 5: Most strongly collocated bigrams in the Brown corpus according to the association
measures simple-ll, t-score, MI with frequency threshold f ≥ 10, and MI with frequency
threshold f ≥ 50.
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for word bigrams in the Brown corpus (excluding punctuation).47 Obviously, simple-ll and1

especially t-score focus on frequent grammatical patterns like of the or to be. More inter-2

esting bigrams can only be found if separate lists are generated for each part-of-speech3

combination.48 The top collocations according to MI, on the other hand, tend to be proper4

names and other fixed combinations. Their cooccurrence frequency is often close to the5

applied frequency threshold.6

5 Statistical association measures7

The simple association measures introduced in Section 4 are convenient and offer a range8

of different perspectives on collocativity. However, two serious shortcomings make this9

approach unsatisfactory from a theoretical point of view and may be problematic for cer-10

tain types of applications. The first of these problems is most easily explained with a11

worked example. In a corpus of about a million words, you might find that the bigrams12

A = the Iliad and B = must also both occur O = 10 times, with the same expected fre-13

quency E = 1. Therefore, any simple measure will assign the same association score to14

both bigrams. However, bigram A is a combination of a very frequent word (the with,15

say, f1 = 100,000) and an infrequent word (Iliad with f2 = 10), while B combines two16

words of intermediate frequency (must and also with f1 = f2 = 1,000). Using the formula17

E = f1f2/N from Section 4.1, you can easily check that the expected frequency is indeed18

E = 1 for both bigrams.49 While O exceeds E by the same amount for the Iliad as for19

must also, it is intuitively obvious that bigram A is much more strongly connected than20

bigram B. In particular, O = 10 is the highest cooccurrence frequency that can possibly be21

observed for these two words (since O ≤ f1, f2): every instance of Iliad in the corpus is22

preceded by an instance of the. For bigram B, on the other hand, the words must and also23

could have cooccurred much more often than 10 times. One might argue that A should24

therefore obtain a higher association score than B, at least for certain applications.25

This example points to a property of collocations that most current approaches do not take
into account: they may be asymmetric, i.e. word w2 might be strongly predicted by w1, but
w1 only weakly by w2 (or vice versa, as in the example of the Iliad). Such asymmetries play
an important role in the node–collocate view: Iliad should not rank highly as a collocate of
the, while the is clearly a strong collocate of Iliad. These considerations also explain to a
certain extent why measures with a high-frequency bias like simple-ll seem to produce more
“satisfactory” lists of collocations in Table 4 than measures with a low-frequency bias like
MI: simple-ll will rank the fairly highly as a collocate for Iliad since there can be no collocates
that cooccur more often, but it will prefer more frequent words than Iliad as collocates for
the. It is less clear to what extent asymmetries are relevant for the unit view of collocations,
and whether association should be as closely linked to predictability in this case. Here,
we will follow the mainstream approach of symmetric association measures, but see the
remarks on asymmetric measures in Section 7.1.

The second limitation of simple association measures is of a more theoretical nature.26

We made use of statistical concepts and methods to define measures with a meaningful27

47This example is based on the bigram data set introduced in Section 2.2.
48As has been done for simple-ll in Table 3.
49While this is an invented example where the precise frequency counts have been kept artificially simple,

it is by no means unrealisitic. In fact, the example is based on the bigram data set extracted from the Brown
corpus, with a sample size of N = 909,768. The frequency signatures of the two bigrams in this data set are:
f = 14, f1 = 69,349, f2 = 14 → E = 1.07 for the Iliad vs. f = 13, f1 = 1,000, f2 = 936 → E = 1.03 for
must also. Another “balanced” bigram with the same observed and expected frequency as the Iliad is can say:
f = 14, f1 = 1,997, f2 = 465 → E = 1.02.
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w2 ¬w2 w2 ¬w2

w1 O11 O12 = R1 w1 E11 =

R1C1

N
E12 =

R1C2

N

¬w1 O21 O22 = R2 ¬w1 E21 =

R2C1

N
E22 =

R2C2

N

= C1 = C2 = N

Figure 5: General form of the contingency table of observed frequencies with row and
column marginals (left panel), and contingency table of expected frequencies under the
null hypothesis of independence (right panel).

interpretation, but did not apply the procedures with full mathematical rigour.50 In statis-1

tical theory, measures of association and tests for the independence of events are always2

based on a cross-classification of a random sample of certain items. An appropriate repre-3

sentation of cooccurrence frequency data in the form of contingency tables is described in4

Section 5.1, with different rules for each type of cooccurrence. Then several widely used5

statistical association measures are introduced in Section 5.2.6

We will see in Section 6 that simple association measures often give close approxima-7

tions to the more sophisticated association measures introduced below. Therefore, they are8

sufficient for many applications, so that the computational and mathematical complexities9

of the rigorous statistical approach can be avoided.10

5.1 Contingency tables11

A rigorous statistical approach to measuring association is based on contingency tables12

representing the cross-classification of a set of items. Such tables naturally take marginal13

frequencies into account, unlike a simple comparison of O against E. As a first step, we14

have to define the set of cooccurrence items in a meaningful way, which is different for15

each type of cooccurrence. Then a separate contingency table is calculated for every word16

pair (w1, w2), using the presence of w1 and w2 in each cooccurrence item as factors for17

the cross-classification.18

The resulting contingency table (left panel of Figure 5) has four cells, representing the19

items containing both w1 and w2 (O11, equivalent to the observed cooccurrence frequency20

O), the items containing w1 but not w2 (O12), the items containing w2 but not w1 (O21),21

and the items containing neither of the two words (O22). These observed frequencies add up22

to the total number of items or sample size, since every item has to be classified into exactly23

one cell of the table. The row and column sums, also called marginal frequencies (as they24

are written in the margins of the table), play an important role in the statistical analysis25

of contingency tables. The first row sum R1 corresponds to the number of cooccurrence26

items containing w1, and is therefore usually equal to f1 (except for surface cooccurrence,27

see below), while the first column sum C1 is equal to f2. This equivalence explains the28

name “marginal frequencies” for f1 and f2.29

50In particular, the sampling variation of the expected frequency E, which is a sample estimate rather than
the “true” population value, is neglected. Moreover, we did not specify a precise sampling model, simply
assuming O to have a binomial distribution with expectation E under the null hypothesis.
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∗|w2 ∗|¬w2 ∗|gent. ∗|¬gent.

w1|∗ O11 O12 = f1 young|∗ 1 2 = 3

¬w1|∗ O21 O22 ¬young|∗ 2 4

= f2 = N = 3 = 9

Figure 6: Contingency table of observed frequencies for syntactic cooccurrence, with con-
crete example for the word pair (young, gentleman) and the data in Figure 3 (right panel).

As in the case of simple association measures, the statistical analysis of contingency1

tables is based on a comparison of the observed frequencies Oij with expected frequen-2

cies under the null hypothesis that the factors defining rows and columns of the table3

are statistically independent (which is the mathematical equivalent of the intuitive notion4

of independence between w1 and w2 introduced in Section 4.1). In contrast to the sim-5

ple approach, we are not only interested in the expected number of cooccurrences of w16

and w2, but have to compute expected frequencies for all four cells of the contingency7

table, according to the equations shown in the right panel of Figure 5. Note that O11 = O8

and E11 = E, so statistical contingency tables are a genuine extension of the previous9

approach.51 The statistical association measures introduced in Section 5.2 below are for-10

mulated in terms of observed frequencies Oij and expected frequencies Eij , the marginals11

Ri and Cj , and the sample size N. This standard notation follows Evert (2004) and allows12

equations to be expressed in a clean and readable form.13

The definition of appropriate contingency tables is most straightforward for syntactic14

cooccurrence. The pair tokens on the right of Figure 3 can naturally be interpreted as a15

set of cooccurrence items. If the first word is w1, an item is classified into the first row16

of the contingency table for the pair (w1, w2), otherwise it is classified into the second17

row. Likewise, the item is classified into the first column if the second word is w2 and into18

the second column if it is not. This procedure is illustrated in the left panel of Figure 6.19

The first row sum R1 equals the total number of cooccurrence items containing w1 as first20

element, and the first column sum equals the number of items containing w2 as second21

element. This corresponds to the definition of f1 and f2 for syntactic cooccurrence in22

Section 3.3. The example in the right panel of Figure 6 shows a contingency table for the23

word pair (young, gentleman) obtained from the sample of adjective-noun cooccurrences24

in Figure 3. Since there are nine instances of adjectival modification of nouns in this toy25

corpus, the sample size is N = 9. There is one cooccurrence of young and gentleman26

(O11 = 1), two items where gentleman is modified by another adjective (O12 = 2), two27

items where young modifies another noun (O21 = 2), and four items that contain neither28

the adjective young nor the noun gentleman (O22 = 4).29

For textual cooccurrence, Figure 2 motivates the definition of cooccurrence items as30

instances of textual units. In this example, each item corresponds to a sentence of the31

corpus. The sentence is classified into the first row of the contingency table if it contains32

one or more instances of w1 and into the second row otherwise; it is classified into the first33

column if it contains one or more instances of w2 and into the second column otherwise34

(see Figure 7). Note that no distinction is made between single and multiple occurrence35

51With the equalities R1 = f1 and C1 = f2, we find that E11 = R1C1/N = f1f2/N = E. Figure 8 shows that
the approximate equality of E11 and E also holds for surface cooccurrence: E11 = R1C1/N ≈ kf1f2/N ≈ E.
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w2 ∈ S w2 /∈ S over ∈ S over /∈ S

w1 ∈ S O11 O12 = f1 hat ∈ S 1 2 = 3

w1 /∈ S O21 O22 hat /∈ S 1 1

= f2 = N = 2 = 5

Figure 7: Contingency table of observed frequencies for textual cooccurrence, with con-
crete example for the word pair (hat, over) and the data in Figure 2 (right panel).

w2 ¬w2 roll ¬roll

near(w1) O11 O12 ≈ k · f1 near(hat) 2 18 = 20

¬near(w1) O21 O22 ¬near(hat) 1 87

= f2 = N − f1 = 3 = 108

Figure 8: Contingency table of observed frequencies for surface cooccurrence, with con-
crete example for roll as a collocate of the node hat according to Figure 1 (right panel).

of w1 or w2 in the same sentence. Again, the first row and column sums correspond to the1

marginal frequencies f1 and f2 as defined in Section 3.2. The right panel of Figure 7 shows2

a contingency table for the word pair (hat, over), based on the example in Figure 2. With3

five sentences in the toy corpus,52 sample size is N = 5. One of the sentences contains both4

hat and over (O11 = 1), two sentences contain hat but not over (O12 = 2), one sentence5

contains over but not hat (O21 = 1), and one sentence contains neither of the two words6

(O22 = 1).53
7

The statistical interpretation of surface cooccurrence is less straightforward than for8

the other two types. The most sensible definition identifies cooccurrence items with the9

relevant word tokens in the corpus, but excluding instances of the node word w1, for10

which no meaningful cross-classification is possible.54 Each item, i.e. word token, is then11

classified into the first row of the contingency table if it cooccurs with the node word w1,12

i.e. if it falls into one of the collocational spans around the instances of w1; it is classified13

into the second row otherwise. The item is classified into the first column of the table if14

it is an instance of the targeted collocate w2, and into the second column otherwise. The15

procedure is illustrated in Figure 8, with a concrete example for the data of Figure 1 shown16

in the right panel. This toy corpus consists of 111 word tokens (excluding punctuation).17

Subtracting the three instances of the node word hat, we obtain a sample size of N = 108.18

Of the 108 cooccurrence items, 20 fall into the collocational spans around instances of hat,19

52Recall that semicolons were interpreted as sentence boundaries.
53The marginal frequency of over was defined as f2 = 2 even though there are three instances in the text

sample, since over occurs only in two of the five sentences. This corresponds to the equal status of single and
multiple occurrences in the cross-classification procedure.

54Note that the set of cooccurrence items differs slightly between word pairs (more precisely, between word
pairs with different first components). This is in contrast to syntactic and textual cooccurrence, where a fixed
set of items is used for all word pairs and only the cross-classifying factors are different.
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so that the first row sum is R1 = 20. Two of these items are cooccurrences of hat and roll1

(O11 = 2), and the remaining 18 items are classified into the second cell (O12 = 18). The2

88 items outside the collocational spans are classified analogously: there is one instance3

of the collocate roll (O21 = 1), and all other items are assigned to the last cell of the table4

(O22 = 87).5

Note that the first row sum R1 does not correspond to the occurrence frequency f1 of the
node word w1, but rather to the total number of word tokens that cooccur with w1, i.e. the
number of tokens in the collocational spans around w1. This value is approximately equal to
k ·f1, where k is the “standard” size of a single span, but R1 will be smaller if different spans
overlap or spans are truncated by sentence boundaries. In the example shown in Figure 8,
R1 = 20 is quite different from the approximation k · f1 = 8 · 3 = 24 because the first span
is truncated by a sentence boundary on the right-hand side.

If we had calculated a contingency table for hat and over based on the same text sample,
the two cooccurrences would also have resulted in O11 = 2, even though they are in the same
collocational span. This is in marked contrast to textual cooccurrence, while for syntactic
cooccurrence, the issue of multiple occurrences within a single “unit” does not arise.

An important property of surface cooccurrence is that the resulting contingency tables
are asymmetric: the table for w1 as a collocate of the node w2 (i.e. the word pair (w2, w1))
may be substantially different from the one for w2 as a collocate of w1 (i.e. the word pair
(w1, w2)). This effect can be very pronounced if the marginal frequencies of w1 and w2

differ considerably. Simple association measures, which only take the top left cell of the
table into account (i.e. O11 and E11), gloss over the difference between the two contingency
tables, since E11 is the same for both tables (except for minor differences due to overlaps
and truncations of the collocational spans). Statistical association measures, on the other
hand, will be affected to varying degrees.

For syntactic and textual cooccurrence, the contingency tables can be calculated di-
rectly from frequency signatures (O, f1, f2, N) that have been obtained as described in
Sections 3.2 and 3.3, using the following transformation equalities:

O11 = O O12 = f1 − f

O21 = f2 − f O22 = N − f1 − f2 + f

The use of frequency signatures in combination with the equalities above is usually the6

most practical and convenient implementation of contingency tables.55 Tables for surface7

cooccurrence cannot be simplified in the same way, and it is recommended to calculate8

them by the explicit cross-classification procedure explained above.9

Since surface cooccurrence is most often combined with a node–collocate view of colloca-
tions, the implementation can be optimised by calculating the row sums for the fixed node
word w1 first and then filling in the cells Oij based on cooccurrence frequency O = O11 and
marginal frequency f2 = C1 for each collocate w2. A rough approximation to the correct
contingency tables, corresponding to E ≈ kf1f2/N in Section 4.1, can be obtained by using
the equalities above and replacing f1 with k ·f1, where k is the total size of the collocational
span (see Section 4.1). This approximation can be quite inaccurate if spans overlap or are
truncated by sentence boundaries, though.

55In particular, marginal frequencies can be shared by different word pairs with the same first or second
component and do not have to be recomputed for every word pair.
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5.2 Selected measures1

Statistical association measures assume that the set of cooccurrence items is a random2

sample from a large population (representing an extensional definition of language as the3

set of all utterances that have been or can be produced, cf. Article 36) and attempt to4

draw inferences about this population. Like simple measures, they can be divided into the5

general groups of effect-size and significance measures.6

Effect-size measures aim to quantify how strongly the words in a pair are attracted to7

each other, i.e. they measure statistical association between the cross-classifying factors in8

the contingency table. Liebetrau (1983) gives a comprehensive survey of such association9

coefficients and Evert (2004, 54–58) discusses their mathematical properties. Coefficients10

describe properties of a population without taking sampling variation into account. They11

can be used as association measures in a straightforward way if this fact is ignored and12

the observed frequencies are taken as direct estimates56 for the corresponding population13

probabilities. As a result, effect-size measures tend to be unreliable especially for low-14

frequency data.15

MI is the most intuitive association coefficient, comparing observed cooccurrence fre-16

quency against the value expected under the null hypothesis of independence. The equa-17

tion shown in Figure 4 is also meaningful as a statistical association measure, where it18

should more precisely be written log2(O11/E11). Two other association coefficients are the19

(logarithmic) odds ratio (Blaheta and Johnson 2001, 56) and the Dice coefficient (Smadja20

et al. 1996), shown in Figure 9. The odds-ratio measure satisfies both conventions for21

association scores, with a value of 0 corresponding to independence and high positive val-22

ues indicating strong positive association. Its interpretation is less intuitive than that of23

MI, though, and it has rarely been applied to collocations. The Dice coefficient does not24

adhere to the second convention, as it does not assume a well-defined value in the case of25

independence. It cannot be used to identify word pairs with strong negative association,26

but is well-suited for rigid combinations such as fixed multiword units (Smadja et al. 1996;27

Dias et al. 1999).28

The odds ratio quantifies association strength by comparing the column ratios O11/O21

and O12/O22 in the contingency table (or, equivalently, the row ratios). From the right
panel of Figure 5 it is obvious that the two ratios should be equal under the null hypothesis
of independence: E11/E21 = E12/E22 = R1/R2. In the case of a positive association,
i.e. O11 > E11, we will find that the first column ratio O11/O21 is larger than the second
ratio O12/O22, while it is smaller for a negative association. This motivates the fraction
O11/O21
O12/O22

= O11O22
O12O21

as an association coefficient. It is known as “odds ratio” because the column
ratios are sometimes called “odds”, as in gambling. The logarithm of the odds ratio satisfies
both conventions for association scores, with a value of 0 in the case of independence.

The odds-ratio equation is often amended by adding 1
2 to each observed frequency, in

order to avoid undefined values for contingency tables with zero entries and improve its
mathematical properties as a statistical estimator (Agresti 2002, 71). Figure 9 shows the
amended version of the odds-ratio measure. The odds ratio does not have the same intuitive
interpretation as MI and is mostly appreciated for its statistical properties, which fit in well
with the random sampling model for contingency tables. Consequently, it has rarely been
applied to collocations, with Blaheta and Johnson (2001) as a notable exception.

56Such direct estimates are called maximum-likelihood estimates in mathematical terminology.
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∑
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(Oij − Eij)
2

Eij

chi-squaredcorr =
N
(

|O11O22 − O12O21| −N/2
)2

R1R2C1C2

log-likelihood = 2
∑

ij

Oij log
Oij

Eij

average-MI =
∑

ij

Oij · log2

Oij

Eij

Dice =
2O11

R1 + C1
odds-ratio = log

(

O11 + 1
2

)(

O22 + 1
2

)

(

O12 + 1
2

)(
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Figure 9: Some widely used statistical association measures.

The Dice coefficient focuses on cases of very strong association rather than the com-
parison with independence. It can be interpreted as a measure of predictability, based on
the ratios O11/R1 (the proportion of instances of w1 that cooccur with w2) and O11/C1

(the proportion of instances of w2 that cooccur with w1). The two ratios are averaged by
calculating their harmonic mean, leading to the equation in Figure 9. Unlike the more fa-
miliar arithmetic mean, the harmonic mean only assumes a value close to 1 (the largest
possible Dice score) if there is a strong prediction in both directions, from w1 to w2 and vice
versa. The association score will be much lower if the relation between the two words is
asymmetric.

Statistical significance measures are based on the same types of hypothesis tests as the1

simple measures in Section 4.2, viz. chi-squared tests (as a generalisation of z-scores) and2

likelihood-ratio tests. Unsurprisingly, there is no counterpart for t-score, which was based3

on an inappropriate test and hence cannot be translated into a rigorous statistical mea-4

sure. The chi-squared measure adds up squared z-scores for all cells of the contingency5

table (
∑

ij indicates summation over all four cells, i.e. over indices ij = 11,12,21,22).57
6

The normal approximation implicit in the z-scores becomes inaccurate if any of the ex-7

pected frequencies Eij are small, and chi-squared exhibits a low-frequency bias similar8

to the z-score measure. A better approximation is obtained by applying Yates’ continuity9

correction (cf. DeGroot and Schervish 2002, Sec. 5.8). The continuity-corrected version is10

often written in the compact form shown as chi-squaredcorr in Figure 9, without explicit11

reference to expected frequencies Eij . Chi-squared is a two-sided measure because the12

squared values are always positive. It can be transformed into a one-sided measure using13

the general procedure introduced in Section 4.2. Chi-squared is often abbreviated X2, the14

symbol used for the chi-squared test statistic in mathematical statistics.15

The log-likelihood measure (Dunning 1993) is a straightforward extension of simple-ll,16

replacing the term O − E by a summation over the remaining three cells of the contin-17

gency table. It is a two-sided measure and is sometimes abbreviated G2 in analogy to18

X2. Interestingly, the association scores of log-likelihood, simple-ll and chi-squared are19

all interpreted against the same scale, a χ2
1 distribution (cf. Section 4.2).58 Mathemati-20

cians generally agree that the most appropriate significance test for contingency tables is21

Fisher’s exact test (Agresti 2002, 91–93), which was put forward by Pedersen (1996) as22

57Note that adding raw z-scores does not make sense, as positive and negative values would cancel out.
58The values of the one-sided z-score measure are on a comparable scale as well. Under the null hypothesis

of independence, squared z-scores follow the same χ2
1 distribution as the other three measures. Although all

these scores measure the same quantity (viz., the amount of evidence against the null hypothesis of indepen-
dence) on comparable scales in principle, they often compute strikingly different values in practice, as will be
demonstrated in Section 6.1.
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an alternative to the log-likelihood measure. Unlike chi-squared and likelihood-ratio tests,1

this exact test does not rely on approximations that may be invalid for low-frequency data.2

Fisher’s test can be applied as a one-sided or two-sided measure and provides a useful3

reference point for the discussion of other significance measures. However, it is compu-4

tationally expensive and a sophisticated implementation is necessary to avoid numerical5

instabilities (Evert 2004, 93). Section 6.1 shows that log-likelihood provides an excellent6

approximation to association scores computed by Fisher’s test, so there is little reason to7

use the complicated and technically demanding exact test. The information-theoretic mea-8

sure average-MI is identical to log-likelihood (except for a constant factor) and need not9

be discussed further here.10

The appropriate information-theoretic measure for the statistical cross-classification model
is average-MI, which can also be understood as an extension of local-MI to the full contin-
gency table. It has repeatedly been noted as a curiosity that the average-MI formula is almost
identical to that of log-likelihood (Dunning 1998, 75–76), but a thorough discussion of the
relation between information theory and likelihood-ratio tests is far beyond the scope of
this article. Pointwise MI can also be defined in a meaningful way in the cross-classification
model and leads to the familiar MI measure that has been interpreted as an association
coefficient above.

It is important to understand that although MI and average-MI are based on the same
information-theoretic concepts, they measure entirely different aspects of association. Point-
wise MI tells us how much information each individual occurrence of w1 provides about
nearby occurrences of w2, and vice versa, making it a measure of effect size (how “tightly
linked” w1 and w2 are). Average-MI, on the other hand, tells us how much information the
distribution of w1 in the corpus provides about the distribution of w2, and vice versa. It is
thus related to significance measures, since “shared” information between the distributions
corresponds to deviation from the null hypothesis of independence. While the precise math-
ematical reasons for such interconnections may be difficult to grasp, they are obvious from
the equations of the association measures in Figures 4 and 9 (by comparison with MI as an
effect-size measure and log-likelihood as a significance measure).

In this section, the most commonly used statistical association measures have been presented
and are summarised in Figure 9. Log-likelihood is by far the most popular significance mea-
sure and has found widespread use especially in the field of computational linguistics. The
chi-squared measure is known to have a low-frequency bias similar to z-score and MI, which
can be reduced (but not eliminated completely) by applying Yates’ continuity correction. Of
the effect-size measures, MI is the most well-known one and has a very intuitive interpre-
tation. Its formula is identical to the simple association measure MI in Figure 4. The Dice
coefficient enjoys a certain popularity, too, especially for the identification of rigid multi-
word expressions. The odds-ratio measure offers certain mathematical advantages, but its
scores are difficult to interpret and it has rarely been used as an association measure (but
see the remarks on merging effect-size and significance approaches in Section 7.1).

Note that simple association measures can also be computed from the full contingency11

tables, replacing O by O11 and E by E11 in the equations given in Figure 4. This shows12

clearly that many simple measures can be understood as a simplified version (or approxi-13

mation) of a corresponding statistical measure. A more comprehensive list of association14

measures with further explanations can be found in Evert (2004, Sec. 3) and online at15

http://www.collocations.de/AM/16

Both resources describe simple as well as statistical association measures, using the nota-17

tion for contingency tables introduced in this section and summarised in Figure 5.18
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6 Finding the right measure1

The twelve equations in Figures 4 and 9 represent just a small selection of the many associ-2

ation measures that have been suggested and used over the years. Evert (2004) discusses3

more than 30 different measures, Pecina (2005) lists 57 measures, and new measures4

and variants are constantly being invented. While some measures have been established5

as de-facto standards, e.g. log-likelihood in computational linguistics, t-score and MI in6

computational lexicography, there is no ideal association measure for all purposes. Dif-7

ferent measures highlight different aspects of collocativity and will hence be more or less8

appropriate for different tasks: the n-best lists in Tables 4 and 5 are a case in point.9

The suitability of an association measure also depends on many other parameters such as
cooccurrence type, frequency threshold, language, genre, domain, corpus size, etc. There-
fore, one should never become so daunted by the multitude of options as to fall back on a
standard choice.

The goal of this section is to help researchers choose a suitable association measure10

(or set of measures) for their study. While the primary focus is on understanding the char-11

acteristic properties of the measures presented in this article and the differences between12

them, the methods introduced below can also be applied to other association measures,13

allowing researchers to make an informed choice from the full range of options.14

6.1 Mathematical arguments15

Theoretical discussions of association measures are usually concerned with their mathe-16

matical derivation:59 the assumptions of the underlying model, the theoretical quantity to17

be measured, the validity and accuracy of the procedures used (especially if approxima-18

tions are involved), and general mathematical properties of the measures (such as a bias19

towards low- or high-frequency word pairs). A first step in such discussions is to collect20

association measures with the same theoretical basis into groups. Measures within each21

group can often be compared directly with respect to their mathematical properties (since22

ideally they should measure the same theoretical quantity and hence lead to the same re-23

sults), while different groups can only be compared at a general and rather philosophical24

level (does it make more sense to measure effect size or significance of association?).25

As has already been mentioned in Sections 4 and 5, the association measures intro-26

duced in this article fall into two major groups: effect-size measures (MI, Dice, odds-ratio)27

and significance measures (z-score, t-score, simple-ll, chi-squared, log-likelihood). The28

choice between these two groups is largely a philosophical issue: one cannot be consid-29

ered “better” than the other. Instead, they highlight different aspects of collocativity and30

are plagued by different types of mathematical problems.31

While the information-theoretic measures are based on a distinct mathematical theory, they
do not form a separate group: MI is identical to the effect-size measure of the same name,
while average-MI is fully equivalent to the significance measure log-likelihood (and local-
MI is strikingly similar to simple-ll). Therefore, we will not consider these measures in
the following discussion. The heuristic MIk family of measures is difficult to place, lacking
a well-defined theoretical background. However, their similarity to MI puts them at least
close to the group of effect-size measures.

59Such discussions are thus limited to measures with sound statistical underpinnings. They cannot be
applied to heuristic measures or, e.g., the invalid derivation of the t-score measure from t tests by Church
et al. (1991).
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Figure 10: Direct comparison of association scores on synthetic data set, using Fisher’s
exact test as reference point (scores are transformed to χ2

1 scale).

Significance measures are particularly amenable to mathematical discussions, since in1

principle they attempt to measure the same theoretical quantity: the amount of evidence2

provided by a sample against the null hypothesis of independence. Moreover, chi-squared,3

log-likelihood and simple-ll use the same scale (the χ2
1 distribution), so that their scores are4

immediately comparable. While z-score and t-score use a scale based on the normal dis-5

tribution, their scores can easily be transformed to the χ2
1 scale. The long-standing debate6

in mathematical statistics over appropriate significance tests for contingency tables has7

not completely been resolved yet (see Yates 1984), but most researchers consider Fisher’s8

exact test to be the most sensible and accurate measure of significance (Yates 1984, 446).9

We will therefore use it as a reference point for the comparison of association measures in10

the significance group. Fisher’s test calculates so-called p-values (cf. Article 36), which are11

also transformed to the χ2
1 scale for the comparison. The scatterplots in Figure 10 compare12

association scores calculated by various significance measures with those of Fisher’s exact13

test, using a synthetic data set in which cooccurrence and marginal frequencies have been14

varied systematically.60 The log-likelihood measure (G2) and to some extent also simple-ll15

(G2
simple) give an excellent approximation to Fisher’s test, as all data points are close to the16

diagonal. Chi-squared and z-score overestimate significance drastically (points far above17

diagonal), while t-score underestimates significance to a similar degree (points far below18

diagonal).61
19

For effect-size measures, there is no well-defined theoretical quantity that would allow20

a direct comparison of their scores (e.g. with scatterplots as in Figure 10). Numerous21

coefficients have been suggested as measures of association strength in the population, but22

statisticians do not agree on a theoretically satisfactory choice (see e.g. Liebetrau 1983).62
23

A common mathematical property of effect-size measures is the use of direct estimates24

60The data points of an ideal significance measure, which calculates the same scores as Fisher’s test, should
lie on or close to the main diagonal in such plots.

61More detailed analyses show that the overestimation is particularly strong for low-frequency data, ex-
plaining the observed low-frequency bias of z-score and chi-squared.

62Evert (2004, 54–58) compares several of these coefficients by calculating their (asymptotic) values under
certain special conditions such as independence, total association where w1 is always accompanied by w2,
minimal deviation from independence, etc. The comparison provides support for MI if the focus is on deviation
from independence and for Dice if the focus is on total association, but once again no definitive answer can
be given.
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that do not take sampling variation into account. As a result, association scores tend to1

become unreliable for low-frequency data. This effect is particularly severe for MI, odds-2

ratio and similar measures that compare observed and expected frequency, since E11 � 13

for many low-frequency word pairs.63 Extending effect-size measures with a correction for4

sampling variation is a current topic of research and is expected to bridge the gap between5

the effect-size and significance groups (see Section 7.1).6

It should be emphasised that despite their mathematical shortcomings, measures such7

as chi-squared and t-score may have linguistic merits that justify their use as heuristic8

measures for collocation identification. While clearly not satisfactory as measures of sig-9

nificance, they must not completely be excluded from the following discussion, which10

focuses on empirical and intuitive properties of association measures.11

To summarise the mathematical discussion, association measures can be divided into effect-
size and significance measures (except for some heuristic equations that are difficult to
place). These two major groups highlight different aspects of collocativity, and a deci-
sion for one or the other cannot be made on purely mathematical grounds. Within the
significance group, mathematical theory and direct comparison of association scores clearly
identify log-likelihood as the most appropriate and convenient measure, with simple-ll as a
good approximation that does not require full contingency tables to be computed. Within
the effect-size group, no clear-cut recommendation can be made, as measures tend to focus
on different aspects of collocativity. In particular, MI seems appropriate for relatively weak
associations that are compared to the independence baseline, while Dice identifies rigid
word combinations with almost total association.

6.2 Collocations and multiword extraction12

In those cases where mathematical theory does not help us choose between association13

measures, we can study their empirical properties independent of the underlying statisti-14

cal reasoning. In this section, we specifically address empirical linguistic properties, i.e.15

we ask what kinds of word pairs are identified as collocations by the different association16

measures. A simple approach is to look at n-best lists as shown in Tables 4 and 5, which17

give a good impression of the different linguistic aspects of collocativity that the associa-18

tion measures capture. For instance, Table 4 indicates that simple-ll is a useful measure19

for identifying typical and intuitively plausible collocates of a node word. Without a fre-20

quency threshold, MI brings up highly specialised terms (*-record bucket), but also many21

obviously accidental cooccurrences (such as dippermouth or Dok).64 A more thorough and22

systematic study along these lines has been carried out by Stubbs (1995).23

63Recall the low-frequency bias of MI that has already been observed in Section 4.2.
64These cooccurrences were found in the following sentences (node and collocate have been highlighted):

• Accordingly, the five bodies are baptized with the names of famous Blues songs: ‘Dippermouth’, ‘Gut
Bucket’, ‘Potato Head’, ‘Tin Roof’, and ‘Really’. [G1N: 696]

• By planting two seedlings of the variety ‘Dok Elgon’ per 5-litre bucket of peat in August, they have har-
vested good-quality curds in time for Christmas. [A0G: 2173]
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It is also obvious that MI is highly sensitive to frequency thresholds: if only word pairs with
cooccurrence frequency f ≥ 5 are considered, the MI list looks much more reasonable,
although it still includes a broad mixture of linguistic phenomena. A frequency threshold of
f ≥ 3 or f ≥ 20 would produce entirely different lists once again. This instability, which
is shared by all measures with a low-frequency bias, makes it necessary to carefully balance
frequency thresholds against corpus size (and also span size for surface cooccurrence) in
order to obtain an interpretable set of collocates. Researchers might thus prefer to use more
robust measures without a low-frequency bias. Measures such as simple-ll and t-score, which
have an explicit high-frequency bias, are not sensitive to frequency thresholds: there are no
low-frequency cooccurrences among the highest-ranking collocates.

One has to keep in mind, though, that these are merely impressionistic case studies with
serious shortcomings. (i) They take only a small number of highest-ranking collocations
into account, and a quite different picture might emerge if one were to look at a list of sev-
eral hundred collocations. (ii) Only a small number of association measures are typically
considered. If more measures are included (especially very similiar measures like simple-ll
and local-MI), it becomes increasingly difficult to make general statements about the dis-
tinct properties of individual measures. (iii) Impressions and conclusions from these case
studies cannot easily be generalised to other data sets. In addition to the problem of fre-
quency thresholds discussed above, results depend very much on the size and content of
the corpus being used, preprocessing (such as automatic lemmatisation or part-of-speech
filters), whether a node–collocate or a unit view is adopted, and especially on the type of
cooccurrence (surface, textual or syntactic). When applied to adjacent bigrams in the Brown
corpus, simple-ll ranks much less interesting patterns of functions words at the top of the
list, while MI identifies proper names and noun compounds with high accuracy and is less
susceptible to different frequency thresholds than for the node–collocate data (see Table 5).

More precise empirical statements than such impressionistic case studies can be made1

if there is a well-defined goal or application for the identified collocations. A particu-2

larly profitable setting is the use of association scores for multiword extraction, where the3

goal usually is to identify a particular subtype of multiword expressions, e.g. compounds4

(Schone and Jurafsky 2001), technical terminology (Daille 1994) or lexical collocations5

(Krenn 2000). Evert and Krenn (2001, 2005) suggest an evaluation methodology for such6

tasks that allows fine-grained quantitative comparisons between a large number of as-7

sociation measures. The evaluation follows the standard procedure for semi-automatic8

multiword extraction, where recurrent word pairs are obtained from a corpus, option-9

ally filtered by frequency or other criteria, and ranked according to a selected associa-10

tion measure. Since there are no meaningful absolute thresholds for association scores11

(cf. Section 2.1), it is standard practice to select an n-best list of the 500, 1000 or 200012

highest-ranking collocations as candidate multiword expressions. The candidates are then13

validated by an expert, e.g. a professional lexicographer or terminologist.14

In the evaluation setting, candidates in the n-best list are manually annotated as true15

positives (i.e. multiword expressions of the desired type) and false positives. These an-16

notations are used to calculate the precision of the n-best list, i.e. the proportion of true17

positives among the n multiword candidates, and sometimes also recall, i.e. how many18

of all suitable multiword expressions that could have been extracted from the corpus are19

actually found in the n-best list. The precision values of different association measures can20

then be compared: the higher the precision of a measure, the better it is suited for iden-21

tifying the relevant type of multiword expressions. Such evaluation experiments could be22

used, e.g., to confirm our impression that MI reliably identifies multiword proper names23

among adjacent bigrams (Table 5).24

Instead of large and confusing tables listing precision values for various association25

measures and n-best lists, evaluation results can be presented in a more intuitive graphical26
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Figure 11: Comparative evaluation of association measures t-score (t), log-likelihood (G2),
chi-squared (X2), MI and MI3 on the data set of Krenn (2000).

form as precision plots. Figure 11 illustrates this evaluation methodology for the data set1

of Krenn (2000), who uses PP-verb cooccurrences from an 8 million word subset of the2

German Frankfurter Rundschau newspaper corpus to identify lexical collocations between3

prepositional phrases and verbs (including support verb constructions and figurative ex-4

pressions).65 The lines in Figure 11 summarise the precision values of five different associ-5

ation measures for arbitrary n-best lists. The precision for a particular n-best list can easily6

be read off from the graph, as indicated by the thin vertical line for n = 1,000: the solid7

line at the top shows that t-score achieves a precision of approx. 32% on the 1000-best8

list, while log-likelihood (the dashed line below) achieves only 30.5%. The precision of9

chi-squared (dotted line) is much lower at 21.5%. Looking at the full lines, we see that10

log-likelihood performs much better than chi-squared for all n-best lists, as predicted by11

the mathematical discussion in Section 6.1. Despite the frequency threshold, MI performs12

worse than all other measures and is close to the baseline precision (dotted horizontal13

line) corresponding to a random selection of candidates among all recurrent word pairs.66
14

Evaluation results always have to be interpreted in comparison to the baseline, and an15

association measure can only be considered useful if it achieves substantially better pre-16

cision. The most striking result is that t-score outperforms all other measures, despite its17

mathematical shortcomings. This illustrates the limitations of a purely theoretical discus-18

sion: empirically, t-score is the best indicator for lexical PP-verb collocations among all19

association measures.67
20

65In order to improve the performance of measures with a low-frequency bias, an additional frequency
threshold f ≥ 5 has been applied (the original study used a threshold of f ≥ 3), leaving 4,489 candidate
pairs to be ranked by the association measures.

66It is interesting to see that the heuristic variant MI3 leads to a considerable improvement, suggesting that
the poor performance of MI might indeed be connected to its low-frequency bias.

67Note that the precision values of all measures are virtually identical for n ≥ 2,000. This is hardly surpris-
ing, as almost half of the candidates are included in the n-best list at this point.
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Figure 12 compares the statistical association measures log-likelihood and chi-squaredcorr

to their simple counterparts simple-ll and z-score. Their scores have already turned out to
be very similar on the synthetic data set in Section 6.1, and this similarity is confirmed by
the evaluation results: the performance of the statistical and the simple measure is virtu-
ally identical for each pair, although simple-ll is marginally worse than log-likelihood (far
away from any significant difference). This shows that for the purpose of multiword extrac-
tion, the more convenient simple association measures can be used without reservation, an
insight that has been confirmed (though not explicitly stated) by many other studies.
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Figure 12: Comparison of simple and statistical association measures: log-likelihood (G2)
vs. simple-ll (G2

simple) and chi-squared (X2) vs. z-score (z). [extended manuscript only]

Similar evaluations have been carried out by a number of authors, but have not led to
conclusive and generally valid answers.

Daille (1994) considers log-likelihood, MI3 and the Coefficient de Fager et McGowan use-
ful for the extraction of French terminological compound nouns. After a detailed qualita-
tive evaluation, she singles out log-likelihood as the most appropriate association measure
(Daille 1994, 173). This assessment is confirmed by Lezius (1999) in a small case study on
German multiword expressions.

The results of Krenn (2000) remain on the whole inconclusive. MI and Dice seem to
be the most suitable association measures for high-frequency data, while log-likelihood
achieves better performance for medium- to low-frequency data. A lexical filter based on
a list of typical “support verbs” (Breidt 1993) improves the identification of support-verb
constructions. In many cases, the distributional PP-entropy measure yields better precision
than association measures.

Schone and Jurafsky (2001) report that z-score, chi-squared and Dice (followed by MI)
greatly outperform log-likelihood and t-score. These results may not be directly comparable
to other studies, however, since the evaluation was carried out on n-grams of variable length.
The results of Pearce (2002) are difficult to interpret because of the extremely low precision
values obtained and because many standard measures were not included in the evaluation.
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Pecina and Schlesinger (2006) find large groups of measures with nearly identical per-
formance. Surprisingly, chi-squared and z-score are among the best measures. Precision can
be further improved by combining multiple association measures with the help of machine-
learning techniques. Evert and Krenn (2005) also report significantly better precision for
chi-squared than for log-likelihood in a lexicographic application.

Some studies use different kinds of reference data than manually annotated true and
false positives. For instance, Lapata et al. (1999) compare association scores to human plau-
sibility judgements. The human ratings correlate better with cooccurrence frequency than
with any association measure, but there is also a significant correlation with log-likelihood.

6.3 An intuitive geometrical model1

In the previous section, we have looked at “linguistic” properties of association measures,2

viz. how accurately they can identify a particular type of multiword expressions or one of3

the other linguistic phenomena behind collocativity (see Section 2.2). If we take a pre-4

theoretic view of collocations as an observable property of language, though, the purpose5

of association scores is to measure this property in an appropriate way, not to match theo-6

retical linguistic concepts. In this context, evaluation studies that depend on a theoretical7

or intuitive definition of true positives seem less appropriate. Instead, our goal should be8

to understand which quantitative aspects of collocativity each association measure singles9

out: we are interested in empirical mathematical properties of the measures.10

The theoretical discussion in Section 6.1 already gives a partial answer: effect-size measures
that do not take sampling variation into account may produce unreliable scores, especially
for low-frequency data where they can easily overestimate association to a large degree. The
same holds for other measures with a low-frequency bias such as z-score and chi-squared.
These measures become much more useful if a sufficiently high frequency threshold is ap-
plied to the cooccurrence data. Measures with a high-frequency bias (e.g. simple-ll and log-
likelihood) may put undue emphasis on very frequent word pairs, on the other hand. The
t-score measure appears to be a special case: despite its unsatisfactory mathematical deriva-
tion, it achieves better performance than well-founded statistical measures in the multiword
extraction task of Krenn (2000), cf. Figure 11. These findings suggest that some mathe-
matical properties of the association measures cannot be captured by theoretical discussions
alone.

Evert (2004, Sec. 3.4) proposes a geometric visualisation technique in order to reach11

the desired intuitive understanding of association measures. This technique works well12

for simple measures that require only two real numbers, O and E, to calculate an associ-13

ation score for a given word pair.68 Interpreting the numbers (O,E) as two-dimensional14

coordinates, we can thus represent each word pair in a data set by a point in the real15

Euclidean plane. The left panel of Figure 13 illustrates this “point cloud” view for adjacent16

bigrams in the Brown corpus.69 The data point representing the bigram New York (with17

O = 303 and E ≈ 0.54) is marked with a circle. Its expected frequency E ≈ 0.5 can be18

read off the x-axis, and its observed frequency O = 303 off the y-axis, as indicated by the19

thin horizontal and vertical lines. Note that both axes are on logarithmic scales in order20

to accommodate the wide range of observed and expected frequencies found in a typical21

data set. The frequency threshold f ≥ 10 applied to the data set is clearly visible in the22

68From the measure’s point of view, this is all the relevant information about the word pair.
69The data set has been thinned by a factor of 10 to improve the visualisation. In addition, a technique

called jittering has been applied, moving each point a small distance in a random direction, in order to avoid
banding due to the integer quantisation of O and to avoid overplotting word pairs with identical frequency
signatures.
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Figure 13: Geometric visualisation of cooccurrence frequency data (left panel) and an
acceptance region of the simple-ll association measure (right panel).

graph.1

Association scores are usually compared against a cutoff threshold, whose value is ei-2

ther established in advance (in a threshold approach) or determined interactively (for3

n-best lists). In terms of the geometric model, the point cloud representing a data set is4

divided into accepted and rejected points by such a cutoff threshold. For any given asso-5

ciation measure and cutoff threshold, this decision only depends on the coordinates of a6

point in the Euclidean plane, not on the word pair represented by the point. It is therefore7

possible to determine for any hypothetical point in the plane whether it would be accepted8

or rejected, i.e. whether the association score would be higher than the threshold or not.9

The right panel of Figure 13 shows an illustration for the simple-ll measure and a cutoff10

threshold of 42. Any data point in the shaded region will be assigned a score G2 ≥ 42,11

and any point outside the region a score G2 < 42.12
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Figure 14: Intuitive comparison of simple association measures represented by contour
plots. The three panels compare simple-ll (G2, left panel), t-score (centre panel) and
z-score (right panel) against MI (dashed lines).

It can be shown that for most association measures70 the set of accepted hypothetical13

points forms a simple connected acceptance region. The region is bounded below by a14

single increasing line referred to as a contour of the association measure. All points on a15

contour line have the same association score according to this measure; in our example, a16

70A notable exception is local-MI because it does not adhere to the conventions for associations scores.
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simple-ll score of 42.71 Every simple association measure is uniquely characterised by its1

contour lines for different threshold values. We can thus visualise and compare measures2

in the form of contour plots as shown in Figure 14. Each panel overlays the contour plots3

of two different association measures. Comparing the shapes of the contour lines, we can4

identify the characteristic mathematical properties of the measures and understand the5

differences between them. Reading contour plots takes some practice: keep in mind that6

contours connect points with the same association scores, just as the contour lines of a7

topographic map connect points of the same elevation.8

MI only considers the ratio between O and E, even for very low observed frequency9

O. Hence its dashed contours in Figure 14 are straight lines.72 These straight lines of10

constant ratio O/E also provide a grid for the interpretation of other contour plots.73 A11

significance measure such as simple-ll (left panel) is sensitive to the smaller amount of12

evidence provided by low-frequency data. Therefore, a higher ratio between O and E is13

required to achieve the same score, and the contour lines have a left curvature. There is a14

single straight contour line, which marks the null hypothesis of independence (O = E) and15

coincides with the corresponding contour line of MI. Contours for positive association are16

located above and to the left of the independence line. Contours for negative association17

show a right curvature and are located below and to the right of the independence line.18

It is important to keep in mind that the precise distances between contour lines are irrel-
evant, since there is no absolute scale for association scores (except for special cases such
as significance measures that can be transformed to a common scale, cf. Section 6.1). For
most applications, only the ranking of data points is important. While the contour lines of
simple-ll seem to be further apart on average than those of MI, this does not tell us anything
about the differences between the measures. An important observation, though, is that the
contour lines of simple-ll are closer together for high-frequency data (in the top right corner
of the plot) and spread out for low-frequency data (towards the bottom left corner), while
the contour lines of MI are parallel across all frequency ranges.

The centre panel of Figure 14 shows a contour plot for the t-score measure. Again,19

independence is marked by a straight line that coincides with the MI contour. For posi-20

tive association, the t-score contours have a left curvature similar to simple-ll, but much21

more pronounced. For very small expected frequencies, they flatten out to horizontal22

lines, creating an implicit frequency threshold effect.74 We may speculate that this implicit23

threshold is responsible for the good performance of t-score in some evaluation studies,24

especially if low-frequency word pairs are not discarded in advance. Interestingly, the25

contour lines for negative association are nearly parallel and do not seem to take random26

variation into account, in contrast to simple-ll.27

Finally, the right panel shows contour lines for z-score. Despite its mathematical back-28

ground as a significance measure, z-score fails to discount low-frequency data. The contour29

lines for positive association are nearly parallel, although their slope is less steep than for30

MI. Thus, even data points with low observed frequency O can easily achieve high associ-31

ation scores, explaining the low-frequency bias of z-score that has been noted repeatedly.32

71Note that contour lines always have non-negative slope, but not necessarily leftward curvature, as shown
by the examples in Figure 14.

72They are parallel lines with the same slope (rather than lines with different slopes intersecting at the
origin) because of the logarithmic scale of the plots.

73In Figure 14, the MI contour lines are chosen to correspond to ratios O/E that are powers of ten, i.e.
O = E for independence, O = 10 · E, O = 100 · E, etc. for positive association, and O = E/10, O = E/100,
etc. for negative association.

74Because of this implicit frequency threshold, high association scores can only be achieved by word pairs
with relatively high O, no matter how small E becomes.
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Interestingly, z-score seems to work well as a measure of significance for negative associa-1

tion, where its contour lines are very similar to those of simple-ll.2

The visualisation technique presented in this section can be extended to statistical3

association measures, but the geometric interpretation is more difficult and requires three-4

dimensional plots. See Evert (2004, Sec. 3.4) for details and sample plots.5

7 Summary and conclusion6

In this article, we have been concerned with the empirical Firthian notion of collocations as7

observations on the combinatorics of words in a language, which have to be distinguished8

clearly from lexicalised multiword expressions as pre-fabricated units, and in particular9

from lexical collocations, a subtype of multiword expressions. From the perspective of10

theoretical linguistics, collocations are often understood as an epiphenomenon, the sur-11

face reflections of compounds, idioms, lexical collocations and other types of multiword12

expressions, selectional preferences, semantic restrictions, cultural stereotypes, and to a13

considerable extent also conceptual knowledge (“facts of life”).14

Introduced as an intuitively appealing, but fuzzy and pre-theoretical notion by Firth15

(1957), collocativity can be operationalised in terms of cooccurrence frequencies and quan-16

tified by mathematical association measures. High association scores indicate strong attrac-17

tion between two words, but there is no standard scale of measurement to draw a clear18

distinction between collocations and non-collocations. Association measures and colloca-19

tions have many uses, ranging from technical applications in computational linguistics to20

lexicographic and linguistic studies, where they provide descriptive generalisations about21

word usage. Collocations are closely related to lexicalised multiword expressions, and as-22

sociation measures are central to the task of automatic multiword extraction from corpora.23

In order to identify and score collocations from a given corpus, the following steps24

have to be performed: (1) Choose an appropriate type of cooccurrence (surface, textual25

or syntactic). (2) Determine frequency signatures (i.e. cooccurrence frequency f and the26

marginal frequencies f1 and f2 in the corpus) for all relevant word pairs (w1, w2) as27

described in Section 3 (Figures 1, 2 and 3 serve as a reminder), as well as sample size28

N. (3) Filter the cooccurrence data set by applying a frequency threshold. Theoretical29

considerations suggest a minimal threshold of f ≥ 3 or f ≥ 5, but higher thresholds often30

lead to even better results in practice. (4) Calculate the expected frequencies of the word31

pairs, using the general equation E = f1f2/N for textual and syntactic cooccurrence,32

and the approximation E = kf1f2/N for surface cooccurrence, where k is the total span33

size. (5) Apply one of the simple association measures shown in Figure 4, or produce34

multiple tables according to different measures. Recall that the cooccurrence frequency f35

is denoted by O (for observed frequency) in these equations. (5) If collocations are treated36

as units, rank the word pairs by association score, or select a threshold to distinguish37

between collocations and non-collocations (or “strong” and “weak” collocations). In the38

node–collocate view, collocates w2 are ranked separately for each node word w1.39

If the data include word pairs with highly skewed marginal frequencies and you sus-40

pect that this may have distorted the results of the collocation analysis, you may want41

to apply statistical association measures instead of the simple measures. In order to do42

so, you have to compute a full 2 × 2 contingency table for each word pair, as well as a43

corresponding table of expected frequencies (see Figure 5). The precise calculation pro-44

cedure depends on the type of cooccurrence and is detailed in Section 5.1 (Figures 6, 745

and 8 serve as quick reminders). Then, one or more of the statistical measures in Fig-46

ure 9 can be applied. Many further measures are found in (Evert 2004) as well as online47
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at http://www.collocations.de/AM/ (both resources use the same notation as in this1

article).2

The resulting set or ranking of collocations depends on many parameters, including the3

size and composition of the corpus, pre-processing (such as lemmatisation), application4

of frequency thresholds, the definition of cooccurrence used, and the choice of associa-5

tion measure. It is up to the researcher to find a suitable and meaningful combination6

of parameters, or to draw on results from multiple parameter settings in order to high-7

light different aspects of collocativity. While a particular type of cooccurrence is often8

dictated by the theoretical background of a study or practical restrictions (e.g., syntactic9

cooccurrence requires a sufficiently accurate software for automatic syntactic analysis, or10

a pre-parsed corpus), other parameter values are more difficult to choose (e.g. span size11

for surface cooccurrence, or the frequency threshold).12

A crucial step, of course, is to select one of well over 50 different association measures13

that are currently available (or to invent yet another measure). At this point, no defini-14

tive recommendation can be made. It is perhaps better to apply several measures with15

well-understood and distinct properties than attempt to find a single optimal choice. In16

any case, a thorough understanding of the characteristic properties of association mea-17

sures and the differences between them is essential for a meaningful interpretation of the18

extracted collocations and their rankings. In Section 6, various theoretical and empirical19

techniques have been introduced for this purpose, and the properties of several widely20

used measures have been discussed.21

7.1 Open questions and extensions22

The goal of this article was to present the current state of the art with regard to collocations23

and association measures. The focus has therefore been on established results rather than24

unsolved problems, open research questions, or extensions beyond simple word pairs. The25

following paragraphs give an overview of important topics of current research.26

Like all statistical approaches in corpus linguistics, association measures suffer from27

the fact that the assumptions of their underlying statistical models are usually not met by28

corpus data. In addition to the general question whether any finite corpus can be represen-29

tative of a language (which is a precondition for the validity of statistical generalisations),30

non-randomness of corpus frequency data is a particularly serious problem for all statisti-31

cal models based on random samples. A thorough discussion of this problem and possible32

solutions can be found in Article 36 and in (Evert 2006).33

In addition to these common issues, cooccurrence data pose two specific difficulties.34

First, the null hypothesis of independence is extremely unrealistic. Words are never com-35

bined at random in natural language, being subject to a variety of syntactic, semantic and36

lexical restrictions. For a large corpus, even a small deviation from the null hypothesis37

may lead to highly significant rejection and inflated association scores calculated by sig-38

nificance measures. Effect-size measures are also subject to this problem and will produce39

inflated scores, e.g. for two rare words that always occur near each other (such as déjà40

and vu). A possible solution would be to specify a more realistic null hypothesis that takes41

some of the restrictions on word combinatorics into account, but research along these lines42

is still at a very early stage.43

Second, word frequency distributions are highly skewed, with few very frequent types44

and a large number of extremely rare types. This property of natural language, often re-45

ferred to as Zipf’s law (see Articles 37 and 41), is even more pronounced for cooccurrence46

data. In combination with the quantisation of observed frequencies (it is impossible to47

observe O = 0.7 cooccurrences), Zipf’s law invalidates statistical corrections for sampling48

42



variation to the extent that accidental cooccurrences between low-frequency words may1

achieve very high association scores. An extensive study of this effect has resulted in the2

recommendation to apply a frequency threshold of f ≥ 5 in order to weed out poten-3

tially spurious collocations (Evert 2004, Ch. 4). Non-randomness effects may exacerbate4

the situation and necessitate even higher thresholds. Current research based on more5

sophisticated models of Zipfian frequency distributions aims to develop better correction6

techniques that are less drastic than a simple frequency threshold.7

Intuitively, “mutual expectancies” often hold between more than two words. This is8

particularly obvious in the case of multiword expressions: kick . . . bucket is always ac-9

companied by the definite article the, humble pie usually occurs with eat, and the bigram10

New York is often followed by City.75 Applying association measures to word pairs will11

only bring up fragments of such larger collocations, and the missing pieces have to be12

filled in from the intuition of a linguist or lexicographer. It is therefore desirable to de-13

velop suitable measures for word triples and larger n-tuples. First attempts to formulate14

such measures are straightforward generalisations of the equations of MI (Lin 1998), log-15

likelihood (Zinsmeister and Heid 2003), or the Dice coefficient (da Silva and Lopes 1999).16

Obviously, a deep understanding of the mathematical properties of association measures17

for word pairs as well as their shortcomings is essential for a successful extension.18

A key problem lies in the fact that the null hypothesis of independence becomes even less
realistic for a combination of three or more words, leading to extremely small expected
frequencies.76 Simple association measures become virtually meaningless under these cir-
cumstances. The full cooccurrence frequency data for a combination of n words can be sum-
marised in an n-dimensional contingency table with 2n cells. For larger values of n, these ta-
bles suffer from an acute data sparseness problem, with many empty or low-frequency cells.
Appropriate measures of significance and effect size for the association in n-dimensional
contingency tables are poorly understood, and more sophisticated statistical models may be
required (Agresti 2002). In addition, it makes little sense to consider word pairs, triples,
quadruples, etc. separately from each other. Automatic methods are needed to determine
how many words form part of a collocation and to distinguish e.g. between genuine three-
word collocations (New York City), nested collocations ({eat {humble pie}}), overlapping
two-word collocations (sip black coffee, where sip coffee and black coffee are “independent”
collocations), and accidental cooccurrences of a two-word collocation with a third word (cf.
Zinsmeister and Heid 2003).

With the extension to n-word collocations, regular patterns become more noticeable:19

in addition to the well-known collocation carry emotional baggage, we also find carry cul-20

tural, historical, ideological, intellectual, political, . . . baggage (some of them even more fre-21

quent than emotional baggage).77 This evidence suggests a productive collocational pattern22

of the form carry Adj baggage, with additional semantic restrictions on the adjective. Many23

instances of such patterns are too rare to be identified in corpora by statistical means, but24

would intuitively be considered as collocations by human speakers (think of carry phraseo-25

75Similar patterns can also be observed for collocations that do not reflect lexicalisation phenomena. For
instance, the collocation of bucket with throw is very frequently accompanied by the noun water. Out of 36
instances of bucket that cooccur with throw, more than half, viz. 20 instances also cooccur with water; while
overall, only 13.5% of the instances of bucket cooccur with water (183 of 1,356).

76For example, the expected frequency of the bigram New York in the Brown corpus is E = 0.5; the expected
frequency of the trigram New York City is E = 0.00025. Recall that words are case-folded here: if we only
considered uppercase variants, the expected frequencies would be even smaller (E = 0.2 and E = 0.000029).

77These examples were extracted from a 2.1 billion word Web corpus of British English, compiled by the
WaCky initiative in 2007. Frequency counts for the different adjectives in the construction carry Adj bag-
gage are: 15×cultural, 13×emotional, 6×historical, 5×ideological, 4×political and 3×intellectual. In the BNC,
ideological baggage (9×) is overall much more frequent than emotional baggage (3×).
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logical baggage, for instance). There has been little systematic research on the productivity1

of collocations so far, notable exceptions being Lüdeling and Bosch (2003) and Stevenson2

et al. (2004).3

Many collocations are intuitively felt to be asymmetric. For instance, in the bigram the4

Iliad, the is a more important collocate for Iliad than Iliad is for the. In the terminology5

of Kjellmer (1991), the bigram is left-predictive, but not right-predictive.78 Although such6

asymmetries are often reflected in skewed marginal frequencies (the collocation being7

more important for the less-frequent word), hardly any of the known association mea-8

sures make use of this information.79 Preliminary research suggests that measures of9

directed association could be based on the ratios O/f1 and O/f2 (as estimators for the10

conditional probability that w1 is accompanied by w2 and vice versa), or could be formu-11

lated by putting the association score of a word pair (w1, w2) in relation to the scores of12

all collocates of w1 and w2, respectively (Michelbacher et al. 2007).13

Collocation studies are usually interested in positive associations between words. Some-
times, however, words seem to repel each other and cooccur less often than would be ex-
pected by chance. In fact, many possible word pairs are never found to cooccur even in
billion-word corpora. Such repulsion leads to a negative association between the words
(O � E), which may then be termed anti-collocations (Pearce 2001). Most anti-collocations
are probably a consequence of semantic, pragmatic or stylistic incompatibilities, while oth-
ers result from competition e.g. with established lexical collocations (you can brush or clean
you teeth, but you will rarely wash or scrub them; you give a talk but do not deliver it, while
you can deliver a speech, sermon or verdict).

The automatic identification and quantification of anti-collocations faces two difficult
problems. First, the unrealistic null hypothesis of independence results in an artificially low
expected frequency E, so that it is hard to find word pairs that cooccur significantly less
often than expected by chance. Word pairs that appear to be statistically independent might
in fact be anti-collocations with respect to an appropriate null hypothesis. Second, evidence
for negative association is much less reliable than evidence for positive association. Even
if a word pair does not cooccur at all in a large corpus (the most clear-cut indication of
negative association), one cannot be certain that it would not do so in a different corpus.
Statistical significance is only reached if the marginal frequencies are high enough so that
E � 1. Recall that according to the contour plots in Figure 14, simple-ll and z-score are
more appropriate measures of negative association than t-score.

Although many association measures are available, there is still room for improvement14

and it would be desirable to develop measures with novel properties. Most existing mea-15

sures fall into one of two major groups, viz. effect-size and significance measures. Both16

groups have their strengths and weaknesses: effect-size measures do not correct for sam-17

pling variation, while significance measures are biased towards high-frequency word pairs18

with small effect sizes (which tend to be uninteresting from a linguistic point of view).19

New association measures might be able to combine aspects of effect-size and significance20

measures, striking a balance between the low-frequency bias of the former and the high-21

frequency bias of the latter. First steps in this direction are summarised by Evert (2004,22

Sec. 3.1.8), but have not led to satisfactory results yet.23

78John Sinclair has used the terms upward and downward collocation (Sinclair et al. 2004, xxiii).
79Simple association measures, which use only the expected frequency E but not the marginals f1, f2, treat

all collocations as symmetric units. Statistical association measures have access to information from the full
contingency table and would in principle be able to calculate directed association. However, all measures
presented in this article are symmetric, i.e. they calculate the same scores for (w2, w1) as for (w1, w2).
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7.2 Further reading1

Evert (2004) gives a more detailed account of statistical models for association in contin-2

gency tables and their limitations, together with a comprehensive inventory of association3

measures and methods for the comparison and evaluation of different measures. An on-4

line version of the inventory can be found at http://www.collocations.de/AM/. Contin-5

gency tables and the statistical tests that form the basis of many association measures are6

explained in standard textbooks on mathematical statistics (e.g. DeGroot and Schervish7

2002). Advanced books (e.g. Agresti 2002) introduce more sophisticated models for the8

analysis of contingency tables. Although these models have not found widespread use9

as association measures yet, they may become important for the development of novel10

measures and their extension beyond simple word pairs.11

Bartsch (2004) offers an insightful theoretical discussion of collocations and their prop-12

erties, as well as an excellent overview of the various empirical and phraseological defini-13

tions of the term. Exemplary proponents of the two views are Sinclair (1991) and Sinclair14

et al. (2004) on the empirical side, and standard textbooks (e.g. Burger et al. 1982) for15

the phraseological view. Current research on collocations and multiword expressions is16

collected in the proceedings of ACL Workshops on Multiword Expressions (2001, 2003,17

2004, 2006, 2007) and in Grossmann and Tutin (2003).18

Relevant articles in this volume are Article 24 (on word segmentation and part-of-19

speech tagging), Article 25 (on lemmatisation), Article 26 (on word sense disambiguation)20

and Article 28 (on automatic syntactic annotation), as well as Article 10 (on text corpora).21

Article 36 is a general introduction to the statistical analysis of corpus frequency data,22

including most of the techniques on which association measures are based. Important23

applications of collocations can be found in the articles on computational lexicography24

(Article 8) and word meaning (Article 45).25

We have followed a traditional view of collocations as simple word pairs here, but26

association measures and related techniques can equally well be applied to cooccurrences27

of other linguistic units (e.g. lexical items and syntactic constructions in Article 43).28
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A Appendix1

This appendix does not appear in the published article.

A.1 Derivation of the simple-ll measure2

In analogy to the two-sample likelihood-ratio test suggested by Dunning (1993), the simple
log-likelihood (simple-ll) measure is the test statistic of a one-sample likelihood-ratio test
for the null hypothesis H0 : E[X] = E, where X is a random variable describing the
cooccurrence frequency of a word pair, O is the value of X observed for the particular
sample under consideration, and E is the expected frequency assuming independence.
This test statistic is given by

−2 logλ = −2 log
Pr0(X = O)
Pr(X = O)

(1)

where λ is the ratio between the maximum likelihood of the observation X = O under H0,3

written Pr0(X = O), and its unconstrained maximum likelihood, written Pr(X = O). If4

H0 holds, −2 logλ has an asymptotic chi-squared distribution with df = 1. In particular,5

simple-ll is a two-sided association measure that does not distinguish between positive6

and negative association. It can be converted into a one-sided measure by the standard7

procedure of multiplying the association scores with −1 if O < E; the signed square root8

of this one-sided statistic has an asymptotic normal distribution under H0.9

Eq. (1) can be expanded in two different ways, depending on whether X is assumed to10

have a binomial distribution (X ∼ B(N, p), with H0 : p = E/N) or a Poisson distribution11

(X ∼ P(α), with H0 : α = E). The difference is that the binomial distribution is con-12

ditioned on a given fixed sample size N, while the Poisson distribution is not. See Evert13

(2004) for an extensive discussion of binomial vs. Poisson sampling. Only the Poisson14

distribution leads to a simple association measure, since the equations for the binomial15

distribution involve the sample size N in addition to O and E.16

For the Poisson distribution, we have

Pr(X = O) = e−O
OO

O!
(2)

with the unconstrained MLE α = O and

Pr0(X = O) = e−E
EO

O!
(3)

with H0 : α = E. Inserting (2) and (3) in Eq. (1), we obtain

λ = eO−E
(
E

O

)O

(4)

and hence

−2 logλ = 2
(

(E − O) + O · log
O

E

)
= 2

(
O · log

O

E
− (O − E)

)
. (5)

Using the binomial distribution instead of Poisson, we have

Pr(X = O) =
(
N

O

)(
O

N

)O (
1 − O

N

)N−O
(6)

46



with the unconstrained MLE p = O/N and

Pr0(X = O) =
(
N

O

)(
E

N

)O (
1 − E

N

)N−O
(7)

with H0 : p = E/N. Therefore,

λ =
EO · (N − E)N−O

OO · (N − O)N−O =
(
E

O

)O

·
(
N − E

N − O

)N−O
(8)

and

−2 logλ = 2
(
O · log

O

E
+ (N − O) · log

N − O

N − E

)
. (9)

Using the series expansion

log(1 + x) = x − x2

2
+

x3

3
− x4

4
+

x5

5
− x6

6
+ . . . (10)

and
N − E

N − O
=

(N − O) + O − E

N − O
= 1 +

O − E

N − O
(11)

we find that

(N − O) · log
N − O

N − E
= −(N − O) · log

N − E

N − O

= −(N − O) ·
(

O − E

N − O
− (O − E)2

2(N − O)2 + . . .

)
= −(O − E) +

(O − E)2

2(N − O)
− . . . .

(12)

Inserting (12) into (9), we see that the Poisson form (5) and the binomial form (9) of1

simple-ll are asymptotically equivalent for O � N. The binomial form (9) shows more2

clearly that log-likelihood is a straightforward extension of simple-ll.3

A.2 BNC examples of kick the bucket4

This appendix lists all instances of the collocation (kick, bucket) in the British National5

Corpus. A simple corpus search by surface distance finds 20 cooccurrences, all of which6

are indeed verb-object constructions. The lower frequency of 12 reported in Table 2 is7

explained by two instances of kick mistagged as a noun, and the fact that the category8

filter used for data preparation rejected 6 instances of kick with ambiguity tags.9

Of the 20 corpus examples found, 8 refer to the literal meaning (marked L below). Only10

3 are direct uses of the idiom kick the bucket (marked I), all in reported speech, while the11

remaining 9 talk about the expression (marked M for meta-discussion). Among the latter,12

there are also two cases where kick the bucket is repeated within the same sentence.13

[AC4] L Jinny was so startled that she nearly
:::::::
kicked the bucket over.

[ATE] I “Did you think I’d
::::::
kicked the bucket, Ma?”

[C8P] L You can also invent little games, such as
:::::::
kicking a ball in a bucket or bowl

of water.
[CA0] L Umberto, snoring in the tack room, barricaded against ghoul and hob-

goblin by one of the feedbins, was woken to a punishing hangover by the
increasingly irritated din of muzzled horses

:::::::
kicking their water buckets.
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[CK9] L When Laddie
::::::
kicked over a bucket of mash, she said, “You bloody silly

donkey.”
[FAC] M It has long been recognised that expressions such as to pull someone’s leg,

to have a bee in one’s bonnet, to
::::
kick the bucket, to cook someone’s goose,

to be off one’s rocker, round the bend, up the creek, etc. are semantically
peculiar.

[FAC] M For instance, the reason that to pull someone’s left leg and to
::::
kick the large

bucket have no normal idiomatic interpretation is that leg and bucket carry
no meaning in the idiom, so there is nothing for left and large to carry
out their normal modifying functions on (in general, a modifier needs a
semantic constituent to modify).

[FAC] M Thus, The aspidistra
::::::
kicked the bucket exemplifies inappropriateness be-

cause replacing
::::
kick the bucket with its cognitive synonym die removes the

dissonance.
[G0P] L It was as if God had

::::::
kicked a bucket of water over.

[GW8] L Suddenly Clare jumped up, leaving his bucket to be
::::::
kicked over by the cow,

went quickly towards her, and, kneeling down beside her, took her in his
arms.

[HE0] M When an idiom is just something that has the form of, has a certain ap-
parent grammatical form but actually occurs just as a single unit of a fixed
meaning, so it has no genuine semantic structure from which you can de-
termine its meaning, for example

::::
kick the bucket means die and you don’t

get that in the meaning of
::::
kick the bucket.

[HE0] M but notice
::::
kick the bucket appears as a verb phrase and eat humble pie, get

your knickers in a twist and so on.
[HE0] M So like I said

::::
kick the bucket, the meaning of that idiomatically is just die,

sorry die.
[HE0] M So, although in all these three,

::::
kick the bucket, eat humble pie, get your

knickers in a twist er all look like fairly complex transitive constructions.
[HH1] L Two of the men flung themselves down on a bench, scabbards clattering,

while the third strode forward,
:::::::
kicking Isabel’s abandoned bucket out of

his path.
[HTG] I “Chatterton and Fagg and a few more like them who’ve since

:::::::
kicked the

bucket. . . . ”
[JXU] I “It’s just that Uncle was a cautious old devil and—” he looked away “—he

got the impression I was a bit of a spendthrift because—well, because I used
to get through my allowance pretty rapidly when I was away at school, and
. . . oh, hell, he wanted to make sure I was going to be dull and sensible
about all that money when he finally

::::::
kicked the bucket. . . . ”

[KC8] L He just
::::::
kicked the bucket.
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