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Abstract

StupidOS is a naive approach to boilerplate removal from English Web pages, based on n-gram models
trained on the FIASCO gold standard. Despite its simplicity, the algorithm achieves a significant im-
provement over the baseline and trades off recall for substantially higher precision. Even the prototype
implementation of StupidOS in pure Perl is lightweight and fast enough to process billions of words.
Keywords : CLEANEVAL, Web as corpus, boilerplate, text cleanup, n-gram models.

1. Introduction
The World Wide Web is a fantastic, almost inexhaustible, and very convenient source
of authentic language data. Automatically compiled Web corpora have become in-
creasingly popular in recent years and have been used for many purposes (Kilgarriff
& Grefenstette 2003; Baroni & Bernardini 2006). In particular, Web corpora offer the
NLP community an opportunity to train statistical models on, and mine information
from, much larger amounts of text than was previously possible. The WaCky initiative 1

has collected 1–2 billion words each of English, German and Italian with relative ease,
and many more large Web corpora are expected to become available within the next few
years.

While statistical models are often applied to large and messy corpora in the hope that
the errors will somehow “cancel out”, Web pages are even more messy than other text
sources. Therefore, thorough preprocessing and “cleanup” of the pages is crucial if
frequency data obtained from Web corpora are to have any degree of dependability.

First of all, many of the HTML pages downloaded by a Web crawler do not contain “or-
dinary” text, written by human (and preferably native) speakers and intended for human
readers, but rather advertising (with many images, animations and hidden keyword lists),
Web spam (artificial pages constructed to influence search engine rankings), automati-
cally generated pages (e.g. from eBay, Amazon, etc.), Web directories and search results
(often fake ones luring visitors to click on advertisements), as well as many other types
of undesirable material. Such pages need to be filtered out from the Web crawl. For
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the remaining pages, character encoding has to be determined correctly (which can be
fairly difficult for languages such as Russian, Chinese and Japanese, where international
standards were adopted at a much later time than for Western languages), and pages that
are not written in the language of interest have to be removed.

The second major problem of Web corpora is the abundance of duplicate pages on the
Web. In the simplest case, these are perfect duplicates, where the same page is avail-
able from different URLs. 2 It is much more difficult to recognise near-duplicate pages,
which have (largely) the same original content, but different layout and design (headers,
footers, navigation bars, etc.). A substantial amount of duplication can also be found at
a finer granularity, where the ease of cut & paste encourages reuse of text blocks, stories,
etc. found somewhere on the Web. Bulletin boards and Weblogs (often with long lists of
reader comments) also tend to contain many copies of the same text segments, typically
in the form of quotations. Since such duplicates inflate frequency counts in a way that
statistical methods cannot account for, it is essential to detect them with high accuracy
and discard all copies of each text but one.

Finally, even when “good” Web pages have been identified and converted to Unicode
text, most of them still contain a substantial amount of unwanted material. This has
become known as boilerplate – canned or automatically generated text blocks including
navigation bars, page headers, link lists, disclaimers and copyright statements, as well as
the ubiquitous advertisements. Boilerplate has a similar effect as page duplicates, in that
it drastically inflates frequency counts for certain terms and expressions (such as click
here, Contents or Vi@gr@). Therefore, reliable boilerplate removal is indispensable to
make Web corpora useful for linguistic and statistical analysis.

Many of the problems of Web corpora listed above are shared by search engines, infor-
mation mining, and other popular fields of research. Therefore, sophisticated methods
have been developed for the recognition of character encoding and language, the identi-
fication of Web spam, as well as duplicate detection. These tools can readily be applied
by the compilers of a Web corpus. Search engines and information mining applications
are usually not concerned about boilerplate, though, since search results can relatively
easily be filtered or ranked to reduce the influence of unwanted text material. On the
other hand, boilerplate is a serious problem for Web corpora, where it injects substantial
amounts of non-authentic and highly duplicative text. On average, 20% or more of the
tetxual content of a Web page consists of boilerplate text (as can be estimated from the
development set of manually cleaned pages released by the CLEANEVAL organisers).
Nonetheless, the task of boilerplate removal has largely been trivialised or ignored in the
Web as corpus community prior to the CLEANEVAL contest.

This paper introduces a naive algorithm for boilerplate removal, aptly named StupidOS,
which makes use of the English gold standard produced by the FIASCO team participat-
ing in CLEANEVAL (Bauer et al. 2007). StupidOS trains simple character-level n-gram

2 For instance, www.collocations.de, www.collocations.de/index.html, www.schtepf.de/
collocations, www.schtepf.de/collocations/ and www.schtepf.de/collocations/index.html all
point to the same Web page.
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models on the gold standard in order to discriminate between boilerplate (called dirty
text) and “good” (or clean) text. The system has been evaluated both on the FIASCO
gold standard and the official CLEANEVAL development set. In both cases, its perfor-
mance is significantly better than the baseline and constitutes a valuable improvement
over straightforward text dumps. Compared to such text dumps, StupidOS leads to an
overall improvement in quality, but also trades off recall for substantially higher preci-
sion. Given the almost unlimited amount of text that can be downloaded from the Web,
this high-precision approach to boilerplate removal seems warranted.

However, the StupidOS algorithm is far from perfect and more research will be needed to
obtain at least a subset of pages where all boilerplate has reliably been deleted (perhaps
at the expense of some clean text).

2. The FIASCO gold standard
The development data sets of manually cleaned Web pages released by the CLEANEVAL
organisers, containing 58 pages for English and 51 for Chinese, do not provide sufficient
training data for machine-learning approaches to boilerplate removal. In February 2007,
at a time when not even these development sets were available, the FIASCO team (Bauer
et al. 2007) decided to develop their own gold standard of English Web pages for partic-
ipation in the CLEANEVAL contest. The gold standard consists of 158 Web pages from
several topical domains (including “Norway”, “computer hardware”, “photography” and
“Japanese manga and anime”), amounting to a total of more than 300,000 words and al-
most 2 million characters (after manual cleanup). The same procedure and guidelines
were used as for the CLEANEVAL development set. Text dumps of the Web pages were
cleaned up manually, then text segments were identified and classified as <p> (normal
paragraph), <h> (heading) or <l> (list item). Each page was independently cleaned by
two annotators, and conflicts were resolved by a third person. With some extentions and
refinements to the CLEANEVAL guidelines, relatively high inter-annotator agreement
(above 90%) was achieved.

The FIASCO gold standard suffers from the same mistake as the CLEANEVAL devel-
opment set: both procedures started from raw text dumps, which were edited manually
to remove boilerplate and insert segment markers. In this way, a reference set of cleaned
text files was obtained, but information was lost about which parts of the original Web
page were boilerplate and which contained clean text. As the FIASCO team later found
out, it is a non-trivial task to reconstruct an alignment between the HTML tree (or even
the raw text dumps) and the manually cleaned text, and no satisfactory alignment quality
has been achieved so far (Bauer et al. 2007 : Sec. 4). As a consequence, the FIASCO
gold standard also fails to provide a corpus of boilerplate (consisting of the dirty text re-
moved from the gold standard files), which could be used to train a supervised classifier
or statistical language model to recognise boilerplate text segments. All that is available
is a corpus of clean text, plus the raw unedited text dumps. This lack of dirty training
data was one of the main obstacles that had to be overcome in the implementation of the
StupidOS system.
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Figure 1. Architecture of the StupidOS system

3. The StupidOS algorithm
The research question that motivated the development of StupidOS was to find out
whether accurate boilerplate removal is possible working exclusively on plain text dumps,
without access to the structure of the original HTML page. This is particularly interest-
ing because most previous approaches, such as the PotaModule, 3 rely to a large extent on
heuristic measures of HTML tag density (in addition to sets of hand-selected keywords).
Making use of the FIASCO gold standard as training data, a simple and straightforward
(some might say naive) language modelling approach was implemented to distinguish
between clean and dirty text.

3.1. System architecture

The StupidOS system is a pipeline of four components, as illustrated in Fig. 1.

The first component performs some normalisation on the original HTML code. Regular
expressions are used to delete images, comments and inline Javascript. In addition,
special markers are inserted for headings and list items, and <br/> tags are converted to
regular paragraph breaks.

In the second step, the pre-processed HTML page is converted to plain text using the
Lynx browser. 4 StupidOS relies on the built-in character encoding recognition of the
browser, and obtains a text file in UTF-8 format.

In a third post-processing step, invalid characters are removed from the text, and some
easily recognisable types of boilerplate (e.g. navigation bars or footer blocks where
multiple fields are separated by vertical bars “|”) are deleted with regular expressions.
Itemised and enumerated lists in the Lynx output are detected, as well as paragraph
breaks indicated by empty lines. In this way, the text is broken down into segments,
which are classified as <p>, <h> or <l> (partly relying on the markers inserted by the first
component).

The fourth and core component of the StupidOS algorithm are n-gram language models
for clean and dirty text. These models are applied to each text segment in turn. If the
dirty model calculates a higher probability than the clean model, the text segment is
considered to be boilerplate and deleted. Otherwise it is included in the final output.

A research prototype of the StupidOS system has been implemented in pure Perl (in-
cluding the n-gram models) and is therefore platform-independent.

3 http://sslmitdev-online.sslmit.unibo.it/wac/post_processing.php
4 http://lynx.browser.org/
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3.2. The language models

In order to distinguish between boilerplate and clean text, the StupidOS system uses sim-
ple character-level n-gram language models (Manning & Schütze 1999), based on con-
ditional probabilities Pr(cn |c1 . . .cn−1), where ci ∈ Σ are characters in the input alphabet
(here restricted to the ASCII range). In order to compensate for the small, uniform
training corpus and ensure better generalisation, geometric interpolation was applied to
estimate n-gram probabilities for unseen text:

Pr∗(cn |c1 . . .cn−1) =
1−q
1−qn ·

(
Pr(cn |c1 . . .cn−1)+q ·Pr(cn |c2 . . .cn−1)+ · · ·+qn−1 ·Pr(cn)

)
In addition, add-one smoothing was applied to the unigram probabilities Pr(cn) in order
to account for unseen or infrequent characters in the training data. Optimisation of the
interpolation parameter q ∈ (0,1) is described in Sec. 3.3. Note that q ≈ 0 corresponds
to an unsmoothed n-gram model without interpolation, whereas q≈ 1 gives equal weight
to all history sizes. Since English text consists almost exclusively of ASCII characters
(except for accented letters in a small number of loan words, as well as foreign words
and proper names), non-ASCII characters were replaced by tilde symbols (~) to reduce
data sparseness problems.

Model training consisted in simple maximum-likelihood estimation of the required con-
ditional probabilities from training data. This procedure was straightforward for the
clean language model trained on the gold standard corpus of cleaned Web pages. Un-
fortunately, a corresponding training corpus for the dirty model was not available, as
explained in Sec. 2. In order to overcome this problem, a differential training scheme
was used, in which n-gram counts for the clean pages were subtracted from the corre-
sponding n-gram counts for the raw text dumps. The differences between the two values
approximate the n-gram counts that would be obtained from a boilerplate training cor-
pus, consisting of the dirty text segments that have been deleted from the gold standard.

It has to be noted that differential n-gram counts are not fully consistent (because they
cannot take the boundaries between dirty and clean text segments into account) and re-
sult in a deficient language model (in fact, estimated probabilities may be negative or
greater than 1, and are clamped to the range [0,1] after training). The StupidOS algo-
rithm is founded on the assumption that this deficient language model is still a good
approximation to the correct language model for dirty text segments, so that a compari-
son of its probabilities with those calculated by the clean model is meaningful.

3.3. Parameter tuning

The best n-gram size n and the optimal value for the interpolation parameter q were
determined by minimisation of cross-entropy on the raw text dumps, calculated by 10-
fold cross-validation. 5 Fig. 2 plots cross-entropy against the interpolation parameter

5 Note that a straightforward minimisation of cross-entropy on the training data without cross-
validation would lead to serious overfitting. The raw text dumps were used because they comprise
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Figure 2. Parameter tuning for the n-gram language models.

q for various values of n. These graphs suggest n = 6 and q = 0.6 (a fairly strong
interpolation where unigrams still have a relative weight of 0.03) as a good and robust
choice, with a cross-entropy of 2.53 bits. The 6-gram model achieves considerably better
cross-entropy than bigram or trigram models, while higher-order models (e.g. n = 8)
require extremely strong interpolation, indicating a low degree of robustness.

However, evaluation of the full StupidOS system (cf. Sec. 4.) revealed that lower-order
models achieve slightly better accuracy despite higher cross-entropy values (perhaps
because of their better generalisation capabilities). After some unsystematic manual ex-
perimentation, a model with n = 3 and q = 0.5 was selected for the final implementation.

3.4. Extension to a multi-language model

A serious shortcoming of StupidOS (and supervised learning approaches in general) is
the need for a sizeable training corpus of manually cleaned Web pages. Language mod-
els trained on English text will produce fairly random results when applied to another
language (this is in part to be expected, since the dirty n-gram model is intended to learn
keywords such as copyright or click here that are characteristic of boilerplate). A user
wanting to apply the StupidOS algorithm to French or German Web pages, for instance,
would have to construct his or her own gold standard to train the models.

Therefore, a simplified language model was designed in the hope of being able to over-
come the language barrier and make the trained model usable at least for other European
languages based on the latin alphabet. In the simplified model, a pre-processing step
maps all letters to the character a and all digits to the character 0. For example, the sen-
tence The answer is 42. would be seen as aaa aaaaaa aa 00. by the simplified model.
Since this mapping removes all lexical information (except for some weak statistics on
word lengths), we hope that the simplified StupidOS algorithm can successfully be ap-

both the clean and the dirty training corpus.
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FIASCO Devset
Precision Recall Precision Recall

Baseline 84.16% 99.58% 86.70% 99.93%
SOS baseline 85.12% 94.11% 87.32% 96.47%
SOS standard 91.95% 91.25% 93.58% 90.92%
SOS simplified 90.17% 89.82% 91.72% 91.74%

Table 1. Overall evaluation results of the StupidOS system on two data sets, showing
micro-averaged precision and recall, i.e. percentages of words across the entire data set.

plied e.g. to French and German Web pages after being trained on the English gold
standard. 6

While it is impossible to test our hypothesis directly for lack of suitable non-English
reference data, the performance of the model on the English gold standard – which is
expected to be lower than that of the standard model – can be seen as an indicator of
the feasibility of this approach. Parameter tuning was performed by minimising cross-
entropy as described in Sec. 3.3. Differences between trigram models and larger values
of n were minimal, but the full evaluation showed higher-order models to be slightly
better and more stable. Hence, n = 6 and q = 0.4 were chosen as model parameters, for
a cross-entropy of 0.87 bits. The relatively small value of q probably reflects the lower
degree of data sparseness faced by the simplified model.

4. Evaluation
4.1. Evaluation methodology

A full evaluation of the StupidOS system was carried out on the FIASCO gold standard,
testing both the standard and the simplified algorithm as described in Sec. 3. A cross-
validation technique was used, so that the language models applied to a given HTML
page were trained on other texts from the gold standard only.

Because of the slow speed and high memory load of the official CLEANEVAL scor-
ing software, a new evaluation script was implemented in Python, using the standard
difflib package to compute an alignment between the automatically cleaned text and
the gold standard. The Python script processes the 158 gold standard files within a few
seconds and reports separate values for precision, recall and F-score 7 at the level of
words. In addition, segmentation accuracy is measured by precision, recall and F-score
for correctly placed segment breaks, irrespective of the segment types (<p>, <h> or <l>).

As a baseline, raw Lynx text dumps were used, which achieve surprisingly high F-score.
A second baseline is given by the StupidOS framework without language models. While
F-score turns out to be slightly lower than for raw text dumps, the StupidOS baseline

6 An intermediate model that distinguishes between vowels and consonants was also tested. This
model would map the example sentence above to tta atttat at 00. However, since this model may still
be language dependent (because of different syllable patterns in the languages) and did not perform
significantly better in the evaluation, it was abandoned in favour of the fully simplified model.

7 F-score is the harmonic mean of precision and recall, and is often used as an overall evaluation
measure that assigns good scores only if both precision and recall are high.
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word accuracy segmentation accuracy
F-score Precision Recall F-score Precision Recall

FIASCO Baseline 85.32% 79.00% 96.74% 0.00% 0.00% 0.00%
SOS baseline 84.06% 79.16% 94.11% 63.72% 54.84% 90.41%
SOS standard 87.63% 88.47% 89.74% 69.96% 71.22% 75.14%
SOS simplified 85.60% 85.35% 89.37% 66.60% 66.36% 75.42%

Devset Baseline 83.74% 77.81% 96.19% 0.00% 0.00% 0.00%
SOS baseline 85.18% 79.48% 96.66% 65.14% 57.01% 89.69%
SOS standard 88.60% 92.09% 87.65% 68.49% 77.42% 69.27%
SOS simplified 86.24% 85.00% 90.78% 66.75% 67.36% 75.32%

Table 2. Evaluation of StupidOS (SOS) on the FIASCO gold standard and the
CLEANEVAL development set (Devset).

adds segment markers that are completely absent from the Lynx baseline.

Development and parameter tuning of the StupidOS algorithm have exclusively been
based on the FIASCO gold standard. As a final test of the system, language models
trained on the full gold standard were applied to the CLEANEVAL development set as
completely unseen data, using the same evaluation metrics as above.

4.2. Results

A summary of the evaluation results is shown in Table 2. On the FIASCO data set,
StupidOS achieves a significant improvement over the baseline, with an F-score of
87.63% vs. 85.32% (paired t-test across texts, t = 1.976, df = 157, p = .0499). In ad-
dition to this overall improvement, StupidOS trades off recall for precision, resulting in
a considerably better precision of 88.47% vs. 79.00%. This difference is highly signifi-
cant, and after correcting for random variation the net increase is at least 7.63% (paired
t-test, 95% confidence interval). Surprisingly, results are even better for the completely
unseen CLEANEVAL development set, with a chance-corrected net increase of at least
1.5% for F-score and 9.16% for precision.

Comparison with the StupidOS baseline shows the important role that the language mod-
els play in the system. Segmentation accuracy is decent, with F-scores close to 70%.
There is no meaningful “uninformed” baseline for comparison, but it is obvious from
Table 2 how the language models trade off recall for precision in this case as well.

All scores in Table 2 are macro-averaged, i.e. they represent averages over the scores
for individual files, regardless of their sizes. Micro-averaged precision and recall scores,
i.e. percentages of correct words in the entire data set, are even better (see Table 1). For
instance, StupidOS achieves a micro-averaged precision of 91.95% vs. a baseline of
84.16% on the FIASCO data set, and 93.58% vs. 86.70% on the development set.

The simplified StupidOS algorithm is always significantly worse than the standard model,
but it still achieves a substantial improvement over the baseline in precision. The small
improvement in F-score is also significant on the development set, but not on the FIASCO
gold standard. These results nurture hopes that the simplified model can at least be used
as a rough-and-ready boilerplate removal tool for other European languages.
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Figure 3. Precision differences

4.3. Processing speed and memory requirements

One advantage of the naive n-gram modelling approach taken by StupidOS is its low
computational complexity, with parameter file sizes of only 1.5 MB for the standard
model and 800 KB for the simplified model. Despite the inefficient Perl implementation,
the system processes approximately 20 million words per hour on a standard server-class
machine. 8 While running, it occupies less than 20 MB of working memory. This shows
that the research prototype of StupidOS can readily be applied even to large Web corpora
containing billions of words.

Clearly, the main performance bottleneck is the pure Perl implementation of the n-gram
models. The StupidOS baseline system without language models processes up to 180 M
words per hour, and a similar throughput can probably be achieved if the n-gram models
are ported to compiled C code.

4.4. Discussion of the high-precision approach

It has already been argued that the main strength of StupidOS is the way in which it
trades off recall for precision. While it achieves a moderate overall improvement in F-
score, precision is considerably higher than for the baseline. In this way, a relatively
high-quality Web corpus can be compiled, although some clean text from the original
Web pages is lost. Given the huge size of the World Wide Web, at least for English
and other major European languages, such a high-precision, low-recall approach will be
appropriate for most applications of Web corpora.

Fig. 3 compares the precision achieved by StupidOS against baseline precision, for all
files in the FIASCO data set. Except for a small number of files, the StupidOS algo-
rithm always improves precision, and for about a third of the files, there is a substantial
improvement of 10% or more. 9 Nonetheless, the StupidOS is not yet able to ensure

8 2 × dual-core AMD Opteron 285 @ 2.6 GHz, 16 GB RAM, normal processing load.
9 A loss in precision is often due to character encoding problems, where e.g. Japanese Unicode char-

acters are incorrectly converted to UTF-8 both by StupidOS and the baseline text dumps. Encoding is
messed up in different ways, though, so that affected words cannot be aligned properly in the evaluation.
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consistently high precision for all Web pages in a data set. Among the 158 files in the
FIASCO gold standard, 17 are cleaned with a precision below 70%, and more than a
third have precision below 90%. 10 Preliminary experiments suggest that larger files,
and especially those with many large text segments, tend to have better precision than
small files with many list items or very short paragraphs. Using linear models to predict
boilerplate removal accuracy, 11 we selected a subset of 100 pages (with predicted pre-
cision ≥ 86%). Average precision on these files is 91.88% (compared to 88.47% for the
entire data set), and there are only 5 files with precision below 70%.

5. Conclusion and outlook
In this paper, we presented the StupidOS algorithm, a naive approach to boilerplate re-
moval based on character-level n-gram models and a manually cleaned training corpus.
Evaluation on two data sets showed a significant improvement in boilerplate removal
accuracy over the baseline. In addition, StupidOS trades off recall for precision, with
less than 10% of boilerplate text remaining in its final output. Even the prototype imple-
mentation of StupidOS in pure Perl is lightweight and fast, so it can readily be applied to
Web corpora in the gigaword range. A simplified version of the algorithm, which might
be usable for other European languages without a need for additional training data, still
achieves a significant improvement over the baseline precision.

There are still many ways in which the system can be improved. A first step would be to
construct a reliably aligned version of the FIASCO gold standard, which may be possibe
with the algorithm used for system evaluation in Sec. 4.1. Based on this new training
corpus, more sophisticated language models could be developed, in particular making
use of structural information from the original HTML code (which can be injected into
the text dumps). Furthermore, a Viterbi search algorithm could be used to identify co-
herent blocks of clean or dirty text, rather than making an independent decision for each
text segment (which may delete random segments from a connected discourse).
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