

A quantitative evaluation of keyword measures for corpus-based discourse analysis

Stefan Evert, Natalie Dykes, Joachim Peters

FAU Erlangen-Nürnberg

www.linguistik.fau.de

Aim

- Keywords as "a quick and simple 'way in'" to corpus comparison (Baker et al. 2013)
- Previous approaches to KW calculation focus on mathematical adequacy and/or number of generated items (cf. Kilgarriff 2001, Paquot & Bestgen 2009, Lijffijt et al. 2016)

Our approach:

- Previously determined qualitative linguistic categories
- Evaluate statistically generated keyword lists against them
- Procedure specifically tailored to discourse analysis

Corpus

- 14.3M token corpus on German web data about multi-resistant pathogens (MRO) collected with BootCat (Baroni & Bernardini 2004)
- 9,750 texts of varying genres and lengths
- Overall corpus metadata (manual)
 - Actor: author
 - Actor: intended reader
 - Topic
 - MRO
 - related topic (clinical hygiene; other infections...)

PHILOSOPHISCHE FAKULTÄT

Corpus

Extraction of relevant subcorpus via metadata

Actor – author: media

Actor – reader: general public

Topic: MRO

1,3M tokens (1,177 texts) of mass media texts and reader comments taken from the MRO corpus

Reference corpora

- Years 2011–2014 of Süddeutsche Zeitung (SZ), a leftleaning daily newspaper (290M tokens)
- Years 2011–2014 of Frankfurter Allgemeine Zeitung (FAZ), a right-leaning daily newspaper (150M tokens)
- All corpora: POS-tagged with TreeTagger and lemmatised with SMOR (Schmid et al. 2004)

PHILOSOPHISCHE FAKULTÄT

Annotation categories

Annotation of top 200 lexical KW for different techniques following gold standard based on previous analysis of a different MRO press corpus (Peters 2017)

Adaption of selected aspects of the DIMEAN model (Spitzmüller/Warnke 2011)

- Actor
- Topos
- Metaphor
- False positives (unclear/other/irrelevant)
- Additional category: evaluative lexis (positive/negative stance)

UNIVERSITÄT ERLANGEN-NÜRNBERG

FRIEDRICH-ALEXANDER

PHILOSOPHISCHE FAKULTÄT UND FACHBEREICH THEOLOGIE

Annotation procedure

9	/ 29 Go <<	>> missing			LABE	L2 for entry #	178 set to eval: neg		[undo]	[export]	back to main page
61	Furunkel	other	other	other	٧	T	Symptome	Set			
62	Gastmeier	actor: science	actor: science	actor: science	۰₹	▼		Set			
163	Gatermann	actor: science	actor: science	actor: science	•	T		Set			
64	Gebietsgrenze	top gen: spread	top gen: spread	top gen: spread	•	▼		Set			
165	Gefahr	unclear	unclear	unclear	٧	eval: neg ▼		Set			
166	gefährlich	unclear	unclear	unclear	۰₹	eval: neg ▼		Set			
67	Geflügelfleisch	top cause: animals	top cause: animals	top cause: animals	7	T		Set			
168	Geflügelmast	top cause: animals	top cause: animals	top cause: animals	•	▼		Set			
169	gelangen	top gen: spread	top gen: spread	top gen: spread	٧	T		Set			
70	Gen	top gen: evolution	top gen: evolution	top gen: evolution	۰₹	▼		Set			
71	Geno	actor: hospital	actor: hospital	actor: hospital	•	T		Set			
72	Gentransfer	top gen: evolution	top gen: evolution	top gen: evolution	•	▼		Set			
173	geschwächt	unclear	unclear	unclear	٧	eval: neg ▼		Set			
74	gescreent	top soln: hospital	top soln: hospital	top soln: hospital	ार	▼		Set			
175	gesund	unclear	unclear	unclear	٧	eval: pos ▼		Set			
76	Gesundheit	unclear	unclear	unclear	₹	eval: pos ▼		Set			
177	Gesundheitsamt	actor: polit	actor: polit	actor: polit	•	•		Set			
78	Gesundheitskris			top gen: spread	•	eval: neg ▼		Set			
179	Gesundheitssenator			-	•	v		Set			
180	Gesundheitssenatorin	actor: polit	actor: polit	actor: polit		T		Set			

Sie isolierten von beiden Immunzellen (Makrophagen , Fresszellen) - und brachten sie mit Bakterien und Viren in Kontakt .

Afro-Fresszellen fressen rascher Das im Fachmagazin Cell veröffentlichte Ergebnis: Die Fresszellen der Amerikaner afrikanischen Ursprungs killten die Bakterien drei Mal so rasch wie die Fresszellen der Amerikaner europäischen Ursprungs.

Afro-Fresszellen fressen rascher Das im Fachmagazin Cell veröffentlichte Ergebnis: Die Fresszellen der Amerikaner afrikanischen Ursprungs killten die Bakterien drei Mal so rasch wie die Fresszellen der Amerikaner europäischen Ursprungs.

Die können angeblich für jedes Bakterium ein Fresszelle herstellen .

Dann gelingt es ihnen leicht, die körpereigenen Fresszellen, die eigentlich für die Abwehr der Eindringlinge zuständig sind, zu zerstören, um sich dann ungehindert auszubreiten.

Als Antibiotikaersatz taugen sie bisher nicht , weil sie im menschlichen Immunsystem schnell von Fresszellen verspeist werden .

Man geht konventionellerweise davon aus , daß die Fresszellen des Immunsystems die Bakterien dann beseitigen . chen-men 16. 11. 2015 24. Noch manche Krankheit wird als Bakterien-Folge erkannt werden Dazu eine hochinteressante Information .

Im Übrigen sind die von Ihnen benannten " Fresszellen " immer Bestandteil der Immunantwort , egal ob mit Antibiotikum oder ohne .

Agreement

- Two independent annotators
- Agreement of 82.2% on distinction TP vs. FP (but Cohen $\kappa = .566$ fairly low)
- Domain-specific, highly frequent words often marked
 FP ("unclear") by one annotator and TP by the other
- Disagreements between TP categories less frequent;
 mostly due to overlap between discourse levels
 - metaphors as part of topoi
 - intertwined argumentational levels
- Final gold standard jointly reconciled by annotators

PHILOSOPHISCHE FAKULTÄT

Keyword extraction techniques

- f_1 = freq. in target corpus
- n_1 = sample size of target
- f_2 = freq. in reference corpus
- n_2 = sample size of reference

- Textbook approach: G²
 log-likelihood significance
 test (Dunning 1993)
- Effect size measure: LR log ratio f1/n1: f2/n2 (Hardie unpulished)
 - combined with Bonferronicorrected significance filter
- Statistician's choice: LRcons conservative LR (Evert p.c.)
 - lower bound of confidence interval (Hardie's formula)
 - with Bonferroni correction

PHILOSOPHISCHE FAKULTÄT

Keyword extraction techniques

- f_1 = df in target corpus
- n_1 = #texts in target corpus
- f_2 = df in reference corpus
- n_2 = #texts in reference

- Methodological discussion: non-randomness / term clustering as key issue
- Simple correction: use document frequency (df) instead of raw frequency
- Mathematical justification
 as statistical inference for
 α parameter of Katz (1996)

Experiments

- Extract top-200 keywords for each technique
 - frequency threshold $f \ge 5$ in reference corpus, because we are not interested in terminology extraction
- Manual annotation of TPs (categories, evaluative)
- Two comparable reference corpora:
 Süddeutsche (SZ) vs. Frankfurter Allgemeine (FAZ)
- Keywords based on raw frequency (classic)
 vs. document frequency (df-based)

Overlap between techniques

Overlap between techniques

Frequency bias

ERLANGEN-NÜRNBERG
PHILOSOPHISCHE FAKULTÄT

Precision = #TP / 200 cand.

TP = assigned to category and/or evaluative

UNIVERSITÄT ERLANGEN-NÜRNBERG

PHILOSOPHISCHE FAKULTÄT

Recall = #kw for each category

UNIVERSITÄT ERLANGEN-NÜRNBERG

PHILOSOPHISCHE FAKULTÄT

Recall = #kw for each category

UNIVERSITÄT
ERLANGEN-NÜRNBERG
PHILOSOPHISCHE FAKULTÄT

Recall = #kw for each category

Why so few metaphor keywords?

Possible causes:

- No metaphors in online media discourse (unlikely)
- Cannot be reduced to single words
- Keywords occur, but are too infrequent

A case study

- List of plausible keywords for each metaphor category from thesaurus (Dornseiff 2004)
 - e.g. POLICE: Indiz clue, Killer killer, Mord murder, Täter culprit, fahnden search, heimtückisch insidious, ...
 - manually validated against concordance in target corpus
- Comparison with full set of keyword candidates
 - frequency in target corpus
 - removed because of reference corpus threshold?
 - keyness score and rank in candidate set

A case study

Dornseiff metaphor keywords in MRSA corpus

Finding metaphor keywords

- Substantial number of plausible keywords for all metaphor categories except ECONOMY
 - frequent in target corpus & pass threshold in reference
 - but very low ranks (> 1000) from all keyness measures
- Reason: literal senses very frequent in reference
 - aggregating all keywords from category doesn't help
- Approximate semantics with distributional context vectors (Schütze 1998)
 - three-sentence context around each potential keyword
 - bag-of-words centroids of word embeddings
 - MRSA contexts clearly separated from reference contexts?

PHILOSOPHISCHE FAKULTÄT

Finding metaphor keywords

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG PHILOSOPHISCHE FAKULTÄT

Finding metaphor keywords

Conclusion

- Quantitative evaluation of keyword techniques & parameters for corpus-based discourse analysis
- Small overlap between *G*² and LR keywords
 - but choice of reference corpus makes little difference
- All techniques achieve high precision > 80%
- Recommendation: LR_{cons} on document frequency
- Good recall for some categories, poor for metaphors
- Suitable keywords are available → new techniques
 And Thank You for your attention!

References

Baker, Paul, Gabrielatos, Costas, & McEnery, Tony (2013). Discourse analysis and media attitudes: The Representation of Islam in the British Press. Cambridge: Cambridge University Press.

Baroni, Marco & Bernardini, Silvia (2004). "BootCaT: Bootstrapping corpora and terms from the web". In Lino, Maria et al. *Proceedings of the Ivth International Conference on Language Resources and Evaluation (LREC)*. Paris: ELRA, S. 1313–1316. URL: http://clic.cimec.unitn.it/marco/publications/lrec2004/bootcat_lrec_2004.pdf (accessed 05/06/2017).

Dornseiff, Franz (2004). *Der deutsche Wortschatz nach Sachgruppen*. Berlin: De Gruyter.

Dunning, Ted (1993). Accurate methods for the statistics of surprise and coincidence. *Computational linguistics*, **19**(1), 61–74.

Evert, Stefan (2004). Significance tests for the evaluation of ranking methods. In *Proceedings of the 20th International Conference on Computational Linguistics* (COLING 2004), pages 945–951, Geneva, Switzerland.

References

Hardie, Andrew (2012). CQPweb – combining power, flexibility and usability in a corpus analysis tool. *International Journal of Corpus Linguistics*, **17**(3), 380–409.

Hardie, Andrew (2014). A single statistical technique for keywords, lockwords, and collocations. Internal CASS working paper no. 1, unpublished.

Katz, Slava M. (1996). Distribution of content words and phrases in text and language modelling. *Natural Language Engineering*, **2**(2), 15–59.

Kilgarriff, Adam (2001). Comparing corpora. *International Journal of Corpus Linguistics*, **6**(1), 97–133.

Lijffijt, Jefrey, Nevalainen, Terttu, Säily, Tanja, Papapetrou, Panagiotis, Puolamäki, Kai, & Mannila, Heikki (2016). Significance testing of word frequencies in corpora. *Digital Scholarship in the Humanities*, **31**(2), 374–397.

Paquot, M., & Bestgen, Y. (2009). Distinctive words in academic writing: a comparison of three statistical tests for keyword extraction. In A. Jucker, D. Schreier, & M. Hundt (Eds.), Corpora: Pragmatics and Discourse. Papers from the 29th International Conference on English Language Research on Computerized Corpora, pages 247–269. Amsterdam: Rodpoi.

References

Peters, Joachim (2017). Den Feind beschreiben. Multiresistente Erreger im deutschen Pressediskurs. Eine diskurslinguistische Untersuchung der Jahre 1994–2015 (master's thesis). Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, unpublished.

Schmid, Helmut; Fitschen, Arne; Heid, Ulrich (2004). SMOR: A German computational morphology covering derivation, composition, and inflection. In *Proceedings of the 4th International Conference on Language Resources and Evaluation* (LREC 2004), pages 1263–1266, Lisbon, Portugal.

Scott, Mike; Tribble, Christopher (2006). *Textual patterns* – *Key words and corpus analysis in language education*. Studies in Corpus Linguistics: Vol. 22. Amsterdam, Philadelphia: John Benjamins.

Schütze, Hinrich (1998). Automatic word sense discrimination. *Computational Linguistics*, **24**(1), 97–123.

Spitzmüller, Jürgen & Warnke, Ingo (2011): Diskurslinguistik. Eine Einführung in Theorien und Methoden der transtextuellen Sprachanalyse. Berlin/New York: De Gruyter.

Annotation scheme

Categories from previous manual study on smaller corpus (Peters 2017)

UNIVERSITÄT
ERLANGEN-NÜRNBERG
PHILOSOPHISCHE FAKULTÄT
UND FACHBEREICH THEOLOGIE

Annotation scheme

FRIEDRICH-ALEXANDER UNIVERSITÄT **ERLANGEN-NÜRNBERG**

PHILOSOPHISCHE FAKULTÄT **UND FACHBEREICH THEOLOGIE**

