
1

Annotation, storage, and retrieval of mildly recursive structures

Stefan Evert, Hannah Kermes
Institut für Maschinelle Sprachverarbeitung,
 Azenbergstr. 12, 70174 Stuttgart, Germany

{evert,kermes}@ims.uni-stuttgart.de

1 Introduction

This paper describes an unusual approach to the partial syntactic analysis of unrestricted German text.
Unlike most other chunk parsers, which are speciall y designed and implemented for the single purpose
of annotating syntactic structures, YAC is the result of a slow evolution from on-line to off-line analy-
sis. As we formulated increasingly complex queries in the CQP query language, some of which had to
recognise nested syntactic structures and test morpho-syntactic agreement within noun phrases, we felt
the need to “write back” the detected structures into the corpus for re-use in further queries.

After three years of development, YAC has become a versatile and robust chunk parser. Technologi-
call y, it is still based on the IMS Corpus Workbench and its query processor CQP. The YAC grammar
consists of rules written in the CQP query language, similar to a context-free grammar without recur-
sion (although the CQP query that makes up the “body” of a rule is by far more powerful than the right-
hand side of a production in a context-free grammar), complemented by Perl scripts used for additional
filtering and post-processing of the query results. The non-recursive rules can be applied repeatedly to
gradually build up hierarchical structures. Although this approach is similar in principle to a cascaded
finite-state parser (Abney 1996b), the CQP query language and especiall y the Perl code used in post-
processing are more expressive, and quite often more convenient than standard finite-state technology.
Other chunk parsers for German and their relation to YAC are discussed in (Kermes and Evert 2003)
and (Kermes 2003).

(Kermes and Evert 2003) give a general overview of the architecture of YAC, as well as the annotated
structures and additional features. They also discuss the particular advantages of the parser’s design
(e.g. that all grammar rules can be executed as on-line queries for debugging purposes) and sketch
some applications of the richly annotated chunk analyses. This paper, on the other hand, is mainly
concerned with the technical detail s of YAC’s implementation

Section 2 introduces the IMS Corpus Workbench, and discusses its strengths and limitations. Section 3
describes the slow evolution from a collection of corpus queries to a robust and powerful chunk parser.
Section 4 discusses the mildly recursive nature of German noun chunks and consequences for the
representation and grammar formalism. A detailed description of the YAC implementation can be
found in Section 5. Section 6 describes the XML output format used by YAC and summarises some
extensions to the CWB for the storage, retrieval, and display of mildly recursive structures.

2 The IMS Corpus Workbench

The IMS Corpus Workbench (CWB) is a highly speciali sed database software for large text corpora.
When it was originall y designed in the early 1990’s, the main goal was to provide eff icient access to
text collections of 100 milli on words and above on the computer hardware that was then available
(Christ 1994). This emphasis on performance and eff icient memory usage led to a read-only, token-
based data model with a static word form lexicon and index. The data model allows an arbitrary num-
ber of token-level annotations (positional attributes, or p-attributes for short), each of which has its
own (static) type lexicon and index. Limited support for non-recursive document-structure markup
(sentences, paragraphs, documents, etc.) is provided by structural attributes (s-attributes for short), and
parallel corpora can be aligned at the sentence level or a similar granularity. Corpora are stored in a
platform-independent binary format, which applications can access directly using memory-mapping
techniques. Thus data files need not be loaded into memory, reducing start-up times and ensuring
optimal performance even when the data size of a corpus exceeds the amount of physical memory.

A key advantage of the CWB are its compression techniques for p-attributes, which reduce the data
size of each attribute by 50% and more. The sequence of tokens or token-level annotations represented
by a p-attribute is Huffman coded, using frequency information from the attribute’s fixed lexicon. For
the lookup index, a special variable-length encoding is used, which assumes that the instances of a

2

particular lexicon entry are evenly distributed across the corpus. Typical data size after compression is
approx. 30 bits/token for lexical attributes (characterised by a large lexicon with many low-frequency
entries) such as the tokens themselves and the lemma annotations. Categorical attributes with a small ,
fixed inventory of annotated codes (examples are part-of-speech tags and morpho-syntactic agreement
features) are compressed more eff iciently and require approx. 10 bits/token. Binary attributes, which
encode yes/no distinctions, are usable only when compressed to a size of 4 bits/token. To flesh out
these numbers, consider a 100-milli on word corpus. Every uncompressed p-attribute requires some 790
Mbytes of disk space (which need to be loaded into memory, at least temporaril y, when a query is
processed). Compression reduces this size to approx. 360 Mbytes for a lexical attribute, 120 Mbytes for
a categorical attribute, and only 50 Mbytes for each binary attribute. The maximal size of a CWB
corpus is dictated by technical constraints of the 32-bit operating systems for which it was designed.
Depending on the number of attributes and their compression rates, corpus sizes of up to 500 milli on
tokens are feasible. Without compression, the limit would be close to 100 milli on tokens instead.

The central component of the CWB is an interactive corpus query processor (CQP), which displays its
KWIC-li ke1 output in a terminal window. Alternatively, the query results can be saved to text files in
one of several output formats, including HTML. In addition to CQP, the CWB includes several utilit y
programs for the encoding (i.e. conversion into the binary CWB format), indexing, and compression of
textual input, as well as tools that extract lexical and distributional information from a CWB-encoded
corpus. Direct access to corpora in the binary CWB format is provided by an undocumented C library.

<text id=42 lang="English">
<s>An easy example.</s>
<s>Just the easiest examples!</s>
</text>

Figure 1. Example of text with document-structure markup (XML).

corpus position word (form) pos lemma
(0) <text> “id=42 lang="English"”
(0) <s>
0 An 0 DET 0 a 0
1 easy 1 ADJ 1 easy 1
2 example 2 NN 2 example 2
3 . 3 PUN 3 . 3

(3) </s>

(4) <s>
4 Just 4 ADV 4 just 4
5 the 5 DET 0 the 5
6 easiest 6 ADJ 1 easy 1
7 examples 7 NN 2 example 2
8 ! 8 PUN 3 ! 6

(8) </s>
(8) </text>

Figure 2. The tabular CWB corpus format (with token-level annotations)

Figure 1 gives a short, but typical example of textual input with document-structure markup in the form
of XML tags. When this text is encoded as a CWB corpus, it is transformed into a tabular format as
sketched in Figure 2. In this format, rows correspond to tokens and columns to token-level annotations,
i.e. positional attributes. The token itself, i.e. the surface word form, is treated as a token-level annota-
tion and encoded in the special “word” attribute. (The small numbers in Figure 2 indicate lexicon IDs
for each p-attribute.) Each token is identified by a unique corpus position, starting from 0 for the first
token in the corpus. XML tags are recognised by the encoding tool and converted into structural
attributes, which can be thought of as sequences of zero-width start and end tags interspersed with the
token sequence. These tags attach to the following or preceding tokens, respectively, and are shown as
additional rows in Figure 2 (with the “implied” corpus position in parentheses). XML attributes in start
tags can optionally be annotated as a single string value (as shown for the <text> tag in the first row),
or parsed into attribute-value pairs (this recent improvement is briefly described in Section 6.3).

The CQP query language uses regular expressions over token descriptions (patterns) to model
contiguous sequences of tokens. A pattern specifies constraints on the annotations (i.e. p-attributes) of
matching tokens. All annotations are treated as strings, which can be matched literall y, against a li st of
fixed values (read from a file), or against a character-level regular expression, which follows the
POSIX standard and supports case- and diacriti c-insensiti ve matching. XML-style tags matching the
start and end points of s-attribute regions can be freely interspersed with token patterns in a CQP query.

1 KWIC stands for “key word in context” , the output format of choice for most appli cations in lexicography.

3

Labels can be assigned to patterns and refer to (the corpus position of) the matching token, so that
additional constraints can be specified that compare the annotations of different tokens. Queries li ke

 (1) a:[pos = "NN"] [pos="APPR"] b:[pos="NN"] :: a.lemma = b.lemma;

which matches two instances of the same noun separated by a preposition (e.g. Tag für Tag; day after
day) extend the expressiveness of the query language beyond that of ordinary regular expressions. All
features of the CQP query language and further “ interactive” commands of CQP are described in (Evert
2003), which is written in the form of a tutorial with numerous example queries.

Binary versions of the IMS Corpus Workbench are available free of charge for non-commercial use.
Currently, supported platforms are SUN Solaris 8 on SPARC processors and Linux (Kernel 2.4 or
newer) on Intel i386-compatible processors. Further detail s and registration information can be found
on the CWB homepage at http://www.ims.uni-stutgart.de/projekte/CorpusWorkbench/ .

Many recent developments of the CWB were inspired by the work on YAC. In addition to the im-
proved XML support, this includes string-replacement macros with up to 10 interpolated arguments,
various convenience features in CQP (command-line editing, better highlighting of query results,
progress information, and the possibilit y to interrupt slow queries), and feature set attributes. Feature
sets encode ambiguous annotation values (e.g. part-of-speech ambiguities not resolved by the tagger, or
ambiguous lemmatisation possibiliti es) in a special string notation, delimited by | characters. The new
comparison operators contains and matches test whether a feature set contains a particular value
and match all elements of the set against a regular expression, respectively. Features set have proven
particularly useful for the annotation of morpho-syntactic features in German and other inflectional
languages. Example (2) shows a short German noun phrase annotated with the morpho-syntactic
information relevant for agreement within the NP. For each token, all possible combinations of case,
gender, and number (as determined by a morphological analyser) are combined into a feature set.

 (2) a. den |Akk:M:Sg|Dat:F:Pl|Dat:M:Pl|Dat:N:Pl|
 b. vierten |Akk:F:Pl|Akk:M:Pl|Akk:M:Sg|Akk:N:Pl
 |Dat:F:Pl|Dat:F:Sg|Dat:M:Pl|Dat:M:Sg|Dat:N:Pl|Dat:N:Sg
 |Gen:F:Pl|Gen:F:Sg|Gen:M:Pl|Gen:M:Sg|Gen:N:Pl|Gen:N:Sg
 |Nom:F:Pl|Nom:M:Pl|Nom:N:Pl|
 c. Platz |Akk:M:Sg|Dat:M:Sg|Nom:M:Sg|

In this case, the head noun Platz is ambiguous between nominative, dative, and accusative case. The
determiner is also ambiguous between dative and accusative. However, when the entire NP is taken
into account, the only consistent analysis is accusative, masculine, singular (shown in itali cs). This
information can be obtained in a CQP query through a combination of labels, a fast built -in function
that computes the intersection of feature sets, and the matches comparison operator.

3 From on-line to off-line analysis

The work that led up to the implementation of YAC began with an effort to improve the CQP queries
used by (Eckle 1999) to extract evidence for verb subcategorisation frames, and write similar queries
for other lexical and syntactic phenomena. Due to the complexity of German noun phrases (cf. the
example below), the generali sed queries quickly became highly complicated and inconveniently long.

(3) APPR ADJA $, APPR ART NN ART NN ADJA NN
 mit kleinen , über die Köpfe der Apostel gesetzten Flammen
 with small above the heads of the apostles set flames
 ‘with small flames set above the heads of the apostles’

(4) [pos="APPR"] [pos="ART"]?
 ((([pos="APPR"] [pos="ART"]?
 ([pos="ADJA"] ("," [pos="ADJA"])*)? [pos = "NN|NE"]+
 ([pos="ART"]? ([pos="ADJA"] ("," [pos="ADJA"])*)? [pos="NN|NE"]+)*)*
 [pos = "ADJA"])
 (","
 ([pos="APPR"] [pos="ART"]?
 ([pos="ADJA"] ("," [pos="ADJA"])*)? [pos = "NN|NE"]+
 ([pos="ART"]? ([pos="ADJA"] ("," [pos="ADJA"])*)? [pos="NN|NE"]+)*)*
 [pos = "ADJA"])*)?
 [pos = "NN|NE"]+ ;

Example (4) shows a CQP query matching the prepositional phrase in (3). Even though this query
omits tests for morpho-syntactic agreement and many generali sations that would be necessary to match

4

similar phrases, it is hardly legible and virtuall y impossible to maintain. It is obvious, though, that a
certain sequence of patterns – matching a simple noun chunk, which is underlined in (4) – is repeated
over and again. When this pattern sequence is captured in a reusable, named rule, the query becomes
much more readable. We used the CQP macro language to define a wide range of rules li ke those for
simple noun and prepositional chunks shown in (5) below.

(5) SimpleNC ⇒
 [pos="ART"]? ([pos="ADJA"] ("," [pos="ADJA"])*)? [pos="NN|NE"]+

 SimplePC ⇒
 [pos="APPR"] /SimpleNC[]

With these rules, the query (4) reduces to

(6) [pos="APPR"] [pos="ART"]?
 ((/SimplePC[] /SimpleNC[]*)* [pos = "ADJA"])
 ("," (/SimplePC[] /SimpleNC[]*)* [pos = "ADJA"])*)?
 [pos = "NN|NE"]+ ;

/SimpleNC[] (and /SimplePC[]) is the syntax used to invoke a macro (i.e. a rule) without argu-
ments in the CQP query language. Extensions to the rule for simple NCs (for instance, allowing op-
tional adverbs modifying adjectives) will also automaticall y apply to simple PCs and all parts of (6).

Although the macro language simpli fies the formulation and maintenance of queries, the macros are
still expanded to the full complex expressions at run-time, with a substantial speed impact on query
evaluation. It would thus be desirable to “memorise” partial matches corresponding to the macro
invocations in (6). When such simple NCs and PCs are annotated as non-recursive structural attributes
(named “nc” and “pc” in the example below), the macro invocations are replaced by constructions li ke
“<nc> []* </nc>” , which matches a pre-annotated noun chunk of arbitrary length.

(7) [pos="APPR"] [pos="ART"]?
 ((<pc> []* </pc> (<nc> []* </nc>)*)* [pos = "ADJA"])
 ("," (<pc> []* </pc> (<nc> []* </nc>)*)* [pos = "ADJA"])*)?
 [pos = "NN|NE"]+ ;

Since the simple NCs and PCs need not be re-analysed whenever (7) or a similar query is executed, the
performance of the query processor improves substantiall y. We understand off-line analysis thus as the
write-back of partial query results into a corpus for later re-use. Any potentiall y useful part of a query
expression is eligible for such write-back. This is markedly different from the other chunk parsers,
whose grammars are expressly designed to identify linguisticall y motivated chunks or phrases.

4 Mildly recursive structures

In the classical definition, chunks are non-recursive, and consequently non-overlapping structures. For
instance, (Abney 1996a) defines a chunk as the “non-recursive core of an intra-clausal constituent” .
Because of this non-recursivity, finite-state technology (possibly in the form of regular expressions)
can be used to identify chunks, and the structural attributes of the CWB suff ice for their representation.
Unfortunately, as (Kermes and Evert 2003) argue, this chunk concept is hardly adequate for German.
Example (8) shows a prepositional phrase with recursive centre-embedding of NPs and PPs, including
post-head embedding of the geniti ve NP der Apostel.

(8) [PP mit [NP [AP kleinen], [AP [PP über [NP die Köpfe [NP der Apostel]]] gesetzten] Flammen]]

Consequently, (Kermes 2003) suggests an extended chunk definition that includes these kinds of recur-
sion, but does not require highly ambiguous PP-attachment decisions to be made. In the following, we
will sometimes refer to such extended chunks as phrases (NP, PP, etc.). Extended chunks are full y
recursive structures, with an in principle unlimited number of embeddings. It would thus seem that the
full power of a context-free grammar is necessary to detect such chunks, and a hierarchical data model
(more or less equivalent to XML) is needed for their representation. However, the picture is somewhat
different when we look at each phrase type on its own, i.e. the embedding of noun phrases in larger
NPs, prepositional phrases in larger PPs, etc. In practice, such embeddings will rarely be more than two
levels deep. Table 1 presents evidence for this claim obtained from the Frankfurter Rundschau corpus,
containing approx. 40 milli on words of newspaper text from the early 1990’s. Only 1,144 out of more
than 12 milli on NPs identified by YAC are nested more than twice, and most of the NPs are nested
only once. PPs show an even lower degree of recursion, with only 20 phrases nested twice.

5

nesting level NPs PPs

0 10,647,350 3,895,664

1 1,480,170 28,675

2 38,238 20

> 2 1,144 —

Table 1. Nesting level of (extended) noun chunks in the Frankfurter Rundschau corpus.

The “mild” degree of recursion found in real language data can be resolved explicitl y, regarding both
identification and annotation of the extended chunks. The non-recursive rules introduced in Section 3
support a single level of embedding. Queries li ke (6) could again be made into rules for “semi-simple”
NPs and PPs, which are then used to formulate queries for “complex” NPs and PPs with two levels of
embedding. Such queries should be able to identify all PPs in the Frankfurter Rundschau corpus, and
would miss only about one in 10,000 NPs. A much more flexible strategy for the identification of
mildly recursive structures writes back smaller chunks and phrases into the corpus as partial query
results. Query (7) can then be used as a rule for PPs at any level of embedding: as soon as all the nested
NPs and PPs are annotated in the corpus, (7) recognises PPs of arbitrary complexity. Thus, instead of
having a set of similar rules for each nesting level, which are expanded into a huge regular expression
by the query processor, (7) and analogous rules for NPs and APs can be applied iteratively until the
desired degree of nesting is reached, or until no larger structures are found.

(9) [PP mit [NP [AP kleinen], [AP [PP1 über [NP1 die Köpfe [NP2 der Apostel]]] gesetzten] Flammen]]

The hierarchical structure of the extended chunk annotations can also be resolved explicitl y. Table 1
suggests that for most applications it will be suff icient to annotate only maximal phrases of each
category, which account for the majority of the corpus data. In order to represent nested phrases, an
additional phrase category is introduced for each level of embedding. Example (9) shows NPs
embedded once as “NP1” , NPs embedded twice as “NP2” etc. This representation of mildly recursive
structures is compatible with the non-recursive structural attributes of the IMS Corpus Workbench,
given that each of the maximal and embedded phrase types is encoded as a separate, independent s-
attribute. Embedded phrases just happen to be nested inside the corresponding larger phrases.

5 The architecture of YAC

In order to implement a chunk parser based on the principle of off-line analysis, we needed a scripting
mechanism to automate the process of executing grammar rules in the form of CQP queries, and to
write back the (partial) query results to the corpus in the form of new or updated structural attributes.
Since CQP is only available as a stand-alone tool for interactive work and does not provide any
scripting features, Perl was an ideal choice as a “glue” language. In addition to its support for
communication with other programs (required both for CQP and the newly developed tools for the
write-back annotation of s-attributes), Perl provides a wide range of string manipulation functions,
which proved useful in the post-processing of query results. As a necessary prerequisite, we had to
develop Perl interfaces to CQP and the C library for direct corpus access. These Perl modules are now
the main programming interfaces of the CWB.

Although it was suggested in the previous section that a single set of rules, applied iteratively, would be
suff icient to build complex structures, it turned out to be advantageous to divide the chunking process
of YAC into three levels as illustrated in Figure 3. The first level introduces lexical information and
annotates base chunks. The second level is the main parsing level. Here, generic phrase structure rules
similar to the one shown in (7) are applied iteratively, with results written back to the corpus after each
iteration. At any given time, only the maximal phrases found up to this point are annotated in the
corpus: when a larger phrase is detected, all embedded phrases of the same type are discarded. The
third level acts as a finishing level (cf. Section 5.3)

Each level is implemented by a Perl script, based on a library of call -back functions. When the macro
representing a grammar rule has been executed, the query matches are automaticall y collected and can
be post-processed with arbitrary Perl code (most importantly, post-processing includes the partial dis-
ambiguation of morpho-syntactic annotations). Then, the results are added to the appropriate structural
attribute for the phrase type at hand. In this process, existing phrases are automaticall y discarded when
they are embedded within a newly identified region, so that the required non-recursivity of s-attributes
is always guaranteed.

6

Figure 3. The three-level annotation process of YAC.

When the parsing process is completed, only maximal phrases of each type are annotated in the corpus,
and no information about the nesting of PPs and NPs is encoded in the structural attributes. However,
as the example in (10) shows, a maximal PP can be embedded in a maximal NP, and vice versa.

(10) [NP Die [PP auf ihren Artikel] stolze Linguistin] spricht [PP mit [NP einem Kollegen]] .
 the of her paper proud linguist is talking with a colleague
 ‘ the scientist who is proud of her paper is talking to a colleague’

In order to recover the full hierarchical structure of extended chunks, all i ntermediate phrases
constructed throughout the chunking process are collected in a text file. During an additional post-
processing step, phrases of all categories are combined into a single hierarchy, which is then seriali sed
to an XML file (cf. Section 6.1). Some care has to be taken in order to distinguish between truly nested
phrases and incomplete phrases, which are annotated at some stages in the parsing process and should
not be included in the final hierarchical analysis. Section 5.4 explains how head markers are used to
make this distinction.

In principle, YAC can be applied to CWB-encoded corpora of any size. However, for corpora contain-
ing many milli ons of tokens, the constant re-encoding and re-loading of structural attributes (which
may contain many milli ons of regions) adds up to a massive overhead. Therefore, large corpora are
split up into sli ces of up to one milli on tokens, each of which is processed separately. The results from
all chunks (including the reconstructed hierarchical analyses) are collected and can then be annotated in
the original corpus. This sli cing strategy also helps to keep the memory footprint of YAC moderately
sized, allowing us to run multiple parsing processes in parallel. YAC achieves a typical parsing speed
of above one milli on tokens per hour, depending on platform and CPU performance.

In the following, the three parsing levels and the hierarchy-building step are described in detail .

5.1 The first level

In contrast to the second level, the first level runs only once. It can be seen as a preliminary stage for
the main parsing process. As such, it serves several purposes: (i) it annotates base-chunks, (ii) it
annotates chunks with a specific internal structure, and (iii) it introduces lexical-semantic properties.

Base-chunks are kernels of phrasal structures or small non-recursive chunks. The chunks are used as a
basis for the further annotation process. Chunks with specific internal structures are base-chunks that
do not follow the general rule pattern of their category. Consequently, they need special rules, which
are valid for a certain subclass of words only. A specific internal structure is usually triggered by the
lexical or semantic properties of the head. In other words, the properties of the head have an impact on
its behaviour, i.e., the head can select specific modifiers or can build multi -word units. Temporal
nouns, e.g., can take specific noun modifiers in pre-head position (Ende September; end of September)
and specific adverbial and year dates in post-head position (Jahre später; years later; Juli 1999; July
1999). Adjacent proper nouns (NE) can be subsumed to named entities (Johann Sebastian Bach). The
dependencies and relations within these chunks are local, i.e., they do not involve long distance
relations or complex (recursive) embedding. Thus, it is suff icient to apply these rules only once.

In addition to base-chunks and chunks with a specific internal structure, lexical and semantic informa-
tion is introduced in the first level, and the base-chunks annotations are enriched with properties of the
phrasal heads. Lexical information can be introduced in two different ways: (i) within the grammar
rules themselves, (ii) during post-processing by the Perl script. When a lexical property triggers a
specific internal structure, it is included directly in the respective rule in the form of a word li st.
Otherwise, the word li sts are compared to the head lemma of the phrase after executing the general

7

rules for the given category. If the lemma is found in one of the word li sts, the lexical information is
added in the form of a set of features associated with the chunk.

5.2 The second level

The second level is the main parsing level. It includes relatively general and simple rules for each
phrasal category, which are applied repeatedly to model complex (recursive) embedding. Example (11)
below gives schematic descriptions of some (simpli fied) second level rules.

(11) a. AP → AdvP? PP? AC
 b. NP → Determiner? Cardinal? AP? NC
 c. PP → Preposition NP

The AP pattern consists of an optional AdvP, an optional PP, and an AC as kernel of the phrase. The
NP rule includes an optional determiner, an optional cardinal, an optional AP, and an NC as kernel.
The PP rule contains a preposition and an NP.

The rules are applied iteratively to build up larger and larger structures, which can involve complex
(recursive) embedding. Thereby, the complexity of phrases is achieved by the embedding of complex
structures (as in query (7)) rather than by complex rules (as in queries (4) and (6)). The same rules that
build simple chunks and phrases can be used for complex phrases – the difference lies simply in the
complexity of the embedded structures. The NPs below differ greatly in their complexity, but both
examples can be built with the same rules (11a) and (11b).

 (12) a. [NP eine [AP verständliche] Sprache]
 an understandable language
 b. [NP eine [AP [PP für den Anwender] verständliche] Sprache]
 a for the user understandable language
 ‘a language understandable for the user’

The rules of each phrasal category are combined into a rule block, after which CQP is restarted to re-
load the newly annotated structures. Thus, the results of each rule block are immediately available to
the following rule blocks: the rules can build not only on the output of the first level and previous
iterations of the second level, but also on the output of previous rule blocks. This strategy reduces the
number of iterations needed in the second level by a factor of up to three, since the bracketed phrases in
(12b) can be annotated in a single pass (rather than the three passes which would otherwise be
necessary). Note that only the largest annotated structure of each phrasal category is available, though.

In contrast to many other approaches, YAC was designed to exploit various special cases to improve its
analysis. In specific “secure” contexts, constraints that are usually imposed on the generic rules can be
relaxed. For instance, the li st of acceptable post-head modifiers can be extended to include PPs when
their attachment is disambiguated by parentheses or quotation marks in the text, cf. (13).

(13) a. [NP " Einladung [PP zur Enthauptung] "]
 invitation to the decapitation
 b. [NP die schlagfertige " Frau [PP mit den Hüten] "]
 the quick-witted woman with the hats

The number of iterations in the second level is in principle unlimited. The level can be repeated until no
more larger structures are found. Experience has shown, though, that three iterations are suff icient to
cover the complexity of all but the most contrived examples.

The fact that the results of the rules are post-processed by Perl scripts allows the overgenerali sation and
underspecification of parts of the grammar. Constraints and filters can then be applied to the results,
either written directly in Perl or using the interactive subsetting and search functions of CQP. Only
structures that satisfy these additional constraints and pass the filters are annotated in the corpus.
Complex APs embedding PP or NP structures, e.g., are only built i n a “secure” context, where they are
included in a larger NP with at least one other element preceding the AP (cf. (14) below). This
particular constraint is tested by Perl code that scans the context of the hypothesised AP.

(14) [NP die [AP [PP von der Gemahlin] [PP gegen das Fußpilzrisiko] empfohlenen]] Socken
 the of the wife against athlete’s foot recommended socks
 ‘ the socks recommended by the wife against athlete’s foot’

8

5.3 The third level

The third level can be seen as a finali sing level and serves multiple purposes: (i) different phrasal
categories are united under one label, (ii) coordination of maximal chunks is performed, (iii) decisions
are made which need full knowledge of the chunks, and (iv) the category of certain chunks is changed.

During the parsing process some phrasal categories are split up into several sub-categories. NPs, e.g.,
are split i nto NPs with determiner (NP), NPs without determiner (NCC), and base noun chunks (NC).
After the parsing process is completed, all three sub-categories are combined into the category NP.

Adverbial and predicatively used adjectives share the same PoS-tag in the tag set used by YAC. They
can only be differentiated by their syntactic context when the chunking process has been completed.
Adverbiall y used APs are embedded as modifiers in other APs or NPs, whereas predicatively used APs
stand alone (as immediate children of a sentence or clause). The category of adverbiall y used APs is
changed accordingly to AdvP, and predicatively used APs are marked with the additional feature pred
in contrast to attributive APs, which are marked with the feature attr.

5.4 Constructing a hierarchical analysis

Since the CWB does not support recursive or overlapping structures of the same category, the full hier-
archical analysis of extended chunks has to be built after the actual parsing process. In order to do so,
the intermediate and maximal structures from all stages of the parsing process are collected in a tempo-
rary text file. Afterwards, a Perl script re-orders this li st with respect to the position of each structure in
the corpus, so that nested phrases immediately follow the containing phrase. It is then easy to combine
phrases of all categories into a single hierarchy. Since all intermediate structures are collected, there
can be more than one version of the same phrase, representing different phases of its construction as the
examples (15a-c) show. Only the largest version is to be included in the hierarchical structure. In order
to determine whether a smaller phrasal structure is an embedded phrase or only a shorter version of the
same phrase, the position of its head is used as a reference point. In other words, only the largest one of
several overlapping structures with the same head is included in the hierarchy, while the smaller
versions are discarded. Overlapping structures with different head positions, on the other hand, are both
included in the hierarchy as nested phrases. The examples below show overlapping NPs collected
during the parsing process. The token representing the head position is underlined in each case.

(15) a. [NP Faszination]
 fascination
 b. [NP gewisse Faszination des Schattens]
 certain fascination of the shadow
 c. [NP eine gewisse Faszination des Schattens]
 a certain fascination of the shadow
 d. [NP des Schattens]
 of the shadow

The first three NPs share the same head (Faszination), whereas the last one has a different head
(Schatten). Thus, the first two NPs (15a-b) are recognised as incomplete versions of (15c), while (15d)
proves to be an embedded NP. The resulting hierarchical structure includes only (15c) and (15d):

(16) [NP eine gewisse Faszination [NP des Schattens]]
 a certain fascination of the shadow

6 Storage, retrieval, and display

6.1 The XML output format

The results of the hierarchy construction step are converted into an XML file whose element tree is
isomorphic to the hierarchical syntactic analysis produced by YAC. Each phrase type is represented by
appropriately named XML elements, e.g. <np> for noun phrases and <vc> for verbal complexes. The
various annotations of phrases (typicall y including features, head lemma, and partiall y disambiguated
morpho-syntactic information) are encoded as attributes of the respective XML elements. Tokens are
represented by <t> elements and may include the values of one or more positional attributes from the
original corpus (in embedded <a> elements). Figure 4 shows a slightly simpli fied example of YAC’s
XML output for the input sentence Lisa trocknet ihre wegen des Regens nassen Füße ab (‘Lisa is

9

rubbing her feet dry, which are wet because of the rain’) . The <t> elements include word form, part-of-
speech, and lemma annotations, the word forms being underlined as a guide for the reader.

The precise document structure of the YAC output format depends on the phrase types and annotations
defined in the grammar, and does therefore not adhere to a fixed DTD. Although authors such as
(Mengel and Lezius 2000) would certainly see this flexibilit y as a disadvantage, we have found the
format reasonably human-readable, as well as convenient and eff icient for further processing,
especiall y with XSLT stylesheets. Such stylesheets can be used to transform the output of YAC into
HTML or other suitable formats for viewing, and to extract lexical and syntactic information.

<s id="s1234">
 <np f="|ne|nogen|" h="Lisa" agr="|Akk:F:Sg|...">
 <t><a> Lisa <a>NE <a>Lisa</t>
 </np>
 <vc f="|norm|" h="abtrocknen">
 <t><a> trocknet <a>VVFIN <a>trocknen</t>
 </vc>
 <np f="|norm|" h="Fuß" agr="|Akk:M:Pl|...">
 <t><a> ihre <a>PPOSAT <a>ihr</t>
 <ap f="|attr|pp|" h="naß" agr="|Akk:F:Pl|...">
 <pp f="|norm|" h="wegen:Regen" agr="|Gen:M:Sg|Gen:N:Sg|">
 <t><a> wegen <a>APPR <a>wegen< /t>
 <np f="|norm|" h="Regen" agr="|Gen:M:Sg|Gen:N:Sg|">
 <t><a> des <a>ART <a>d</t>
 <t><a> Regens <a>NN <a>Regen</t>
 </np>
 </pp>
 <t><a> nassen <a>ADJA <a>naß</t>
 </ap>
 <t><a> Füße <a>NN <a>Fuß</t>
 </np>
 <t><a> ab <a>PTKVZ <a>ab</t>
 <t><a> . <a>$. <a>.</t>
</s>

Figure 4. XML output of YAC (simpli fied example).

6.2 TIGERSearch

A much more powerful tool for displaying and searching hierarchical annotations is the TIGERSearch
software (König and Lezius 2000; Lezius 2002).2 Wolfgang Lezius kindly provided an import filter for
the YAC format, and we have been using the TIGERSearch environment to display the hierarchical
annotations of complex phrases. The TIGERSearch query language was designed for the full syntactic
analysis of a complex grammar formalism or a manually annotated treebank. Its expressiveness is
rarely needed for the relatively simple and shallow structures identified by YAC. So far, we have relied
mostly on stylesheets and CQP queries (as described in the following section) for data extraction.

6.3 IMS Corpus Workbench

In order to make the full hierarchical analyses of YAC available to the Corpus Workbench, it was
necessary to extend its encoding tool with comprehensive support for XML markup. XML elements are
stored in structural attributes with corresponding names (e.g., <np> elements in the “np” attribute). As
suggested in Section 4, recursion of elements with the same name, e.g. <np> , is resolved by automatic
renaming of the embedded elements to <np1> , <np2> , etc. When the nesting exceeds a pre-determined
threshold, the most deeply nested elements are discarded. The attributes of XML elements (attribute-
value pairs in start tags) are parsed and assigned to implicitl y defined s-attributes, following a simple
naming convention. Thus, <np> elements with their f , h, and agr attributes are stored in s-attributes
“np” , “np_f” , “np_h” , and “np_agr” , where they are easil y accessed from CQP queries (cf. Evert 2003).

The feature-set support of CQP is a distinct advantage over XSLT and TIGERSearch. It can be used to
test whether a phrase is annotated with a certain feature such as attr, and gives access to the partiall y
disambiguated morpho-syntactic annotations in the agr attributes of NPs, PPs, and APs. Most CQP
queries will use maximal phrases (of each category) only, but the nesting of different categories can be
modelled with balanced start and end tags in a query. A non-trivial example is (17), which matches a
PP embedded in a maximal NP with the head lemma Kaffee and a geniti ve NP in post-head position:

(17) <np_h "Kaffee"> []* (<pp> |<pp1>) []+ (</pp1>|</pp>)
 []+ <np_agr1 matches "Gen:.*"> []+ </np_agr1> </np_h> ;

2 See http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/ for further information and availabilit y.

10

(Kermes 2003) uses large collections of similar queries, again with Perl as a scripting and post-
processing language, to extract evidence for linguistic and lexicographic phenomena from YAC-parsed
text corpora. Although CQP is a useful tool for interactive queries and information extraction, its KWIC-
style output, which displays structure boundaries as XML tags, is hardly suitable for hierarchical phrase
structure annotations. For the corpus linguist and lexicographer, a concise labelled-bracketing notation
might be the best choice. However, different applications have different needs. Sometimes it will be
necessary to display the head lemma, or indicate the presence of certain features and morpho-syntactic
properties in various ways (e.g. show attributively and predicatively used APs in different colours, or
highlight all geniti ve NPs). Sometimes, a tabular or tree-structured display will be more appropriate.
Sometimes, it is suff icient to show only the token sequences matching a query and display a variable
amount of context in a separate window when requested. What is needed, thus, is not an all -in-one
solution, but a display framework that can be easil y and quickly adapted to specific user needs.

HTTP
Client

CGI
Script
(Perl)

CGI
Script
(Perl)

HTTP
Server
HTTP
Server

HTTP Request

HTML Page CQPCQP

Interactive
Communication

Figure 5. Typical architecture of a web interface to the CWB.

We believe that a web interface to the IMS Corpus Workbench provides such a general framework
(Figure 5). CGI scripts written in Perl use the Perl-CQP interface to execute queries, and transform the
query results into a suitable HTML display. The powerful string-manipulation faciliti es of Perl make it
easy to implement many different views of the same data. An additional benefit is the client-server
architecture of such a web interface, which gives access to CWB corpora even from platforms that are
currently not supported (all that is needed is an HTTP server running on a supported platform). Some
examples can be found at http://www.ims.uni-stuttgart.de/projekte/CorpusWorkbench/Demos/.

7 References

Abney S 1996a. Chunk stylebook. Working draft.

Abney S 1996b. Partial parsing via finite-state cascades. In Proceedings of the ESSLLI '96 Robust
Parsing Workshop.

Christ O 1994. A modular and flexible architecture for an integrated corpus query system. In Papers in
Computational Lexicography COMPLEX ’94. Budapest, Hungary, pp 22-32.

Eckle-Kohler J 1999. Linguistisches Wissen zur automatischen Lexikon-Akquisition aus deutschen
Textcorpora. Berlin, Logos Verlag.

Evert S 2003. The CQP Query Language Tutorial. Technical Report, University of Stuttgart.

Kermes H 2003. Off-line (and on-line) text analysis for computational lexicography. PhD thesis, IMS,
University of Stuttgart, to appear.

Kermes H, Evert S 2003. Text analysis meets corpus linguistics. In Proceedings of Corpus Linguistics
2003, Lancaster, UK.

König E, Lezius W 2000. A description language for syntacticall y annotated corpora. In Proceedings of
COLING 2000. Saarbrücken, Germany, pp 1056-1060.

Lezius W 2002. Ein Suchwerkzeug für syntaktisch annotierte Textkorpora. PhD thesis, IMS, University
of Stuttgart. Arbeitspapiere des Instituts für Maschinelle Sprachverarbeitung (AIMS), volume 8,
number 4.

Mengel A, Lezius W 2000. An XML-based representation format for syntacticall y annotated corpora.
In Proceedings of the Second International Conference on Language Resources and Engineering
(LREC), Volume 1, Athens, Greece, pp. 121-126.

