Annotation, storage, and retrieval of mildly recursive structures

Stefan Evert, Hannah Kermes
Ingtitut fir Maschinelle Sprachverarbeitung,

Azenbergstr. 12, 70174Stuttgart, Germany
{evert, kermes} @ns. uni -stuttgart. de

1 Introduction

This paper describes an unusual approach to the partial syntactic analysis of unrestricted German text.
Unlike most other chunk parsers, which are spedally designed and implemented for the single purpose
of annotating syntactic structures, YAC is the result of a slow evolution from on-line to df-line analy-
sis. Aswe formulated increasingly complex queriesin the CQP query language, some of which had to
reaognise nested syntactic structures and test morpho-syntactic agreament within noun phrases, we felt
the need to “write back” the deteded structures into the crpus for re-usein further queries.

After threeyears of development, YAC has bemme a versatile and robust chunk parser. Technologi-
caly, it is gill based on the IMS Corpus Workbench and its query processor CQP. The YAC grammar
consists of rules written in the CQP query language, similar to a context-freegrammar without recur-
sion (although the CQP query that makes up the “bady” of aruleisby far more powerful than theright-
hand side of a production in a context-freegrammar), complemented by Perl scripts used for additi onal
filtering and post-processng of the query results. The non-reaursive rules can be applied repeatedly to
gradually build uphierarchical structures. Although this approach is smilar in principle to a cascaded
finite-state parser (Abney 199@), the CQP query language and espedally the Perl code used in post-
processng are more expressve, and quite often more wnvenient than standard finite-state technol ogy.
Other chunk parsers for German and their relation to YAC are discussd in (Kermes and Evert 2003
and (Kermes 2003.

(Kermes and Evert 2003 give a general overview of the architedure of YAC, aswell as the annotated
structures and additional features. They also discussthe particular advantages of the parser’s design
(eg. that all grammar rules can be exeated as on-line queries for debuggng puposes) and sketch
some applications of the richly annotated chunk analyses. This paper, on the other hand, is mainly
concerned with the technical detail s of YA C'simplementation

Sedion 2 introduces the IMS Corpus Workbench, and discusssits grengths and limitations. Sedion 3
describes the dlow evolution from a coll edion of corpus queries to arobust and powerful chunk parser.
Sedion 4 discusses the mildly reaursive nature of German noun chunks and consequences for the
representation and grammar formalism. A detailed description of the YAC implementation can be
found in Section 5. Sedion 6 describes the XML output format used by YAC and summarises sme
extensions to the CWB for the storage, retrieval, and dsplay of mildly reaursive structures.

2 ThelMSCorpusWorkbench

The IMS Corpus Workbench (CWB) is a highly spedalised database software for large text corpora.
When it was originally designed in the erly 1990s, the main goal was to provide dficient accessto
text colledions of 100 million words and above on the mmputer hardware that was then avail able
(Christ 1994. This emphasis on performance and efficient memory usage led to a read-only, token-
based data model with a static word form lexicon and index. The data model all ows an arbitrary num-
ber of token-level annotations (positional attributes, or p-attributes for short), each of which has its
own (static) type lexicon and index. Limited support for non-reaursive document-structure markup
(sentences, paragraphs, documents, etc.) is provided by structural attributes (s-attributesfor short), and
parallel corpora can be aligned at the sentence level or a similar granularity. Corpora ae stored in a
platform-independent binary format, which applications can accessdiredly using memory-mapping
techniques. Thus data files need not be loaded into memory, reducing start-up times and ensuring
optimal performance &/en when the data size of a corpus exceals the amount of physical memory.

A key advantage of the CWB are its compresson techniques for p-attributes, which reduce the data
size of each attribute by 50% and more. The sequence of tokens or token-level annotations represented
by a p-attribute is Huffman coded, using frequency information from the attribute’ s fixed lexicon. For
the lodkup index, a spedal variable-length encoding is used, which asaimes that the instances of a

particular lexicon entry are evenly distributed acrossthe wrpus. Typical data size after compresson is
approx. 30 bits/token for lexical attributes (characterised by a large lexicon with many low-frequency
entries) such as the tokens themselves and the lemma annotations. Categorical attributes with a small,
fixed inventory of annotated codes (examples are part-of-speed tags and morpho-syntactic agreament
features) are ompressed more dficiently and require approx. 10 bits/'token. Binary attributes, which
encode yes/no digtinctions, are usable only when compressed to a size of 4 hits/token. To flesh out
these numbers, consider a 100-milli on word corpus. Every uncompressed p-attribute requires some 790
Mbytes of disk space (which need to be loaded into memory, at least temporarily, when a query is
processed). Compresson reduces this $ze to approx. 360 Mbytes for alexical attribute, 120 Mbytes for
a categorical attribute, and only 50 Mbytes for each binary attribute. The maximal size of a CWB
corpus is dictated by technical constraints of the 32-bit operating systems for which it was designed.
Depending on the number of attributes and their compresson rates, corpus szes of up to 500 milli on
tokens are feasible. Without compresson, the limit would be dose to 100 milli on tokens instead.

The central component of the CWB is an interactive crpus query procesor (CQP), which displaysits
kwic-like" output in a terminal window. Alternatively, the query results can be saved to text filesin
one of several output formats, including HTML. In addition to CQP, the CWB includes sveral utility
programs for the encoding (i.e. conversion into the binary CWB format), indexing, and compresson of
textual input, as well astods that extract lexical and dstributional information from a CWB-encoded
corpus. Dired accessto corporain the binary CWB format is provided by an undocumented C library.

<text id=42 |ang="English">

<s>An easy exanple.</s>

<s>Just the easiest exanples!</s>
</text>

Figure 1. Example of text with document-structure markup (XML).

Corpus position word (form) | DOS | lemma
(0) <t ext > “i d=42 | ana="Enal i sh"”
(0) <s>
0 An ~ | DET n a n
1 easv . | AD . easv
2 exanpol e > | NN 5 exanpl e
3 . - [PUN 2 2
(3) </s>
(4 <s>
4 Just 4| ADV ’ i ust ’
5 t he = | DET ~ | the =
6 easi est - | ADJ . easv
7 exanpl es - | NN 5 exanpl e
8 ! o [PUN - ! -
(8) </s>
(8) </ text>

Figure 2. The tabular CWB corpus format (with token-level annotations)

Figure 1 givesa short, but typical example of textual input with document-structure markupin theform
of XML tags. When this text is encoded as a CWB corpus, it is transformed into a tabular format as
sketched in Figure 2. In thisformat, rows correspond to tokens and columns to token-level annotations,
i.e. positional attributes. The token itsdf, i.e. the surfaceword form, istreated as a token-level annota-
tion and encoded in the spedal “word” attribute. (The small numbersin Figure 2 indicate lexicon IDs
for each p-attribute.) Each token isidentified by a unique corpus position, starting from O for the first
token in the @rpus. XML tags are reamgnised by the encoding tod and converted into structural
attributes, which can be thought of as sequences of zero-width start and end tags interspersed with the
token sequence These tags attach to the foll owing or preceling tokens, respedively, and are shown as
additional rowsin Figure 2 (with the “implied” corpus position in parentheses). XML attributesin start
tags can optionally be annotated as a single string value (as shown for the <text> tag in the first row),
or parsed into attribute-value pairs (this recent improvement is briefly described in Sedion 6.3).

The CQP query language uses regular expressons over token descriptions (patterns) to model
contiguous sequences of tokens. A pattern spedfies constraints on the annotations (i.e. p-attributes) of
matching tokens. All annotations are treated as grings, which can be matched literally, against alist of
fixed values (read from a file), or against a character-level regular expresson, which follows the
POSIX standard and supports case- and diacriti c-insensitive matching. XML-style tags matching the
start and end points of s-attribute regions can be fredy interspersed with token patternsin a CQP query.

! kwic stands for “key word in context”, the output format of choice for most appli cations in lexicography.

Labels can be asdgned to patterns and refer to (the wrpus position of) the matching token, so that
additional constraints can be spedfied that compare the annotations of different tokens. Querieslike

(1) a:[pos = "NN'] [pos="APPR'] b:[pos="NN'] :: a.lemm = b.|enmg;

which matches two instances of the same noun separated by a preposition (e.g. Tag fir Tag; day after
day) extend the expressvenessof the query language beyond that of ordinary regular expressons. All
features of the CQP query language and further “interactive” commands of CQP are described in (Evert
2003, which iswritten in the form of atutorial with numerous example queries.

Binary versions of the IMS Corpus Workbench are avail able free of charge for non-commercial use.
Currently, supported patforms are SUN Solaris 8 on SPARC processors and Linux (Kernel 2.4 or
newer) on Intel i386-compatible processors. Further detail s and registration information can be found
on the CWB homepage at http://www.ims.uni-stutgart.de/projekte/ CorpusWorkbench/ .

Many recant developments of the CWB were inspired by the work on YAC. In addition to the im-
proved XML support, thisincludes gring-replacement macros with up to 10 interpolated arguments,
various convenience features in CQP (command-line eliting, better highlighting of query results,
progressinformation, and the possbility to interrupt low queries), and feature set attributes. Feature
sets encode ambiguous annotation values (e.g. part-of-speed ambiguiti es not resolved by the tagger, or
ambiguous lemmatisation posshiliti es) in a spedal string notation, delimited by | characters. The new
comparison operators cont ai ns and nat ches test whether a feature set contains a particular value
and match al eements of the set against a regular expresson, respedively. Features st have proven
particularly useful for the annotation of morpho-syntactic features in German and other infledional
languages. Example (2) shows a short German noun phrase annotated with the morpho-syntactic
information relevant for agreament within the NP. For each token, all posshle ammbinations of case,
gender, and number (as determined by a morphological analyser) are mmbined into a feature set.

(20 a den | Akk: M Sg| Dat: F: Pl | Dat: M Pl | Dat : N: Pl |
b. vierten | Akk:F: Pl | Akk: M PI | Akk: M Sg| Akk: N: Pl
| Dat: F: Pl | Dat: F: Sg| Dat: M Pl | Dat : M Sg| Dat : N: PI | Dat : N: Sg
| Gen: F: PlI'| Gen: F: Sg| Gen: M Pl | Gen: M Sg| Gen: N: Pl | Gen: N: Sg
| Nom F: Pl | Nom M Pl | Nom N: Pl |
c. Hatz | Akk: M Sg| Dat : M Sg| Nom M Sg|

In this case, the head noun Platz is ambiguous between nominative, dative, and accusative @se. The
determiner is also ambiguous between dative and accusative. However, when the entire NP is taken
into acoount, the only consistent analysis is accusative, masculine, singular (shown in italics). This
information can be ohtained in a CQP query through a combination of labels, a fast built-in function
that computes the intersedion of feature sets, and the mat ches comparison operator.

3 Fromon-lineto off-line analysis

The work that led upto the implementation of YA C began with an effort to improve the CQP queries
used by (Eckle 1999 to extract evidence for verb subcategorisation frames, and write similar queries
for other lexical and syntactic phenomena. Due to the mmplexity of German noun phrases (cf. the
example below), the generali sed queries quickly became highly compli cated and inconveniently long.

(3) APR ADJA $ APRR ART NN ART NN ADJA NN
mit kleinen , Uber die Kopfe der Aposte gesetzten Flammen
with small above the heads of the apostles st flames
‘with small flames st abowe the heads of the apostles

(4) [pos="APPR'] [pos="ART"]?
((([pos="APPR'] [pos="ART"]?
([pos="ADJA'] ("," [pos="ADJA'])*)? [pos = "NN| NE'] +
([pos="ART"]? ([pos="ADJA"] ("," [pos="ADJA"])*)? [pos="NN| NE']+)*)*

[pos = "ADJA"])

([pos="APPR'] [pos="ART"]?
([pos="ADJA'] ("," [pos="ADJA'])*)? [pos = "NN NE'] +
([pos="ART"]? ([pos="ADJA"] ("," [pos="ADJA"])*)? [pos="NN| NE']+)*)*
[pos = "ADJA'])*)?
[pos = "NN| NE"] + ;

Example (4) shows a CQP query matching the prepositional phrase in (3). Even though this query
omits tests for morpho-syntactic agreement and many generali sations that would be necessary to match

similar phrases, it is hardly legible and virtually impossgble to maintain. It is obvious, though, that a
certain sequence of patterns — matching a simple noun chunk, which isunderlined in (4) —is repeated
over and again. When this pattern sequenceis captured in a reusable, named rule, the query becomes
much more readable. We used the CQP macro language to define a wide range of rules like those for
simple noun and prepositional chunks siown in (5) bel ow.

(55 SmpleNCO
[pos="ART"]? ([pos="ADJA"] ("," [pos="ADJA"])*)? [pos="NN| NE']+
SimplePC O
[pos="APPR'] /Si npl eNC[]

With these rules, the query (4) reducesto

(6) [pos="APPR'] [pos="ART"]?
((/SinplePC] /SinpleNC]*)* [pos = "ADJA"])
("," (/SinplePC[] /SinpleNC[]*)* [pos = "ADJA'])*)?
[pos = "NN| NE"] + ;

/ Si npl eNC[] (and / Si npl ePC[]) is the syntax used to invoke a macro (i.e. a rule) without argu-
ments in the CQP query language. Extensions to the rule for simple NCs (for instance, allowing op-
tional adverbs modifying adjedives) will also automatically apply to simple PCsand all parts of (6).

Although the macro language simplifies the formulation and maintenance of queries, the macros are
still expanded to the full complex expressons at run-time, with a substantial speed impact on query
evaluation. It would thus be desirable to “memorise” partial matches corresponding to the macro
invocationsin (6). When such smple NCs and PCs are annotated as non-reaursive structural attributes
(named “nc” and “pc” in the example below), the macro invocations are replaced by constructions like
“<nc> []1* </ nc>", which matches a pre-annotated noun chunk of arbitrary length.

@) [pos="APPR'] [pos="ART"]?
((<pc>[]* </pc> (<nc> []* </nc>)*)* [pos = "ADIA"])
("," (<pc>[]* </pc> (<nc> []* </nc>)*)* [pos = "ADJA'])*)?
[pos = "NN| NE"] + ;

Sincethe simple NCs and PCs neel not be re-analysed whenever (7) or asimilar query is exeauted, the
performance of the query processor improves siubstantially. We understand off-li ne analysis thus as the
write-back of partial query results into a corpus for later re-use. Any potentially useful part of a query
expresson is digible for such write-back. This is markedly different from the other chunk parsers,
whose grammars are expresdy designed to identify linguistically motivated chunks or phrases.

4 Mildly recursive structures

In the dasdgcal definition, chunks are non-reaursive, and consequently non-overlapping structures. For
instance (Abney 1996) defines a chunk as the “non-reaursive cre of an intra-clausal constituent”.
Because of this non-reaursivity, finite-state technology (possbly in the form of regular expressons)
can be used to identify chunks, and the structural attributes of the CWB sufficefor their representation.
Unfortunately, as (Kermes and Evert 2003 argue, this chunk concept is hardly adequate for German.
Example (8) shows a prepositional phrase with reaursive cantre-embedding of NPs and PP, including
post-head embedding of the genitive NP der Apostel.

(8) [ppmit [np [ap Kleinen], [ap [pp Uber [yp die Kopfe [vp der Apostel]]] gesetzten | Flammen]

Consequently, (Kermes 2003 suggests an extended chunk definiti on that includes these kinds of recur-
sion, but does not require highly ambiguous PRattachment dedsions to be made. In the foll owing, we
will sometimes refer to such extended chunks as phrases (NP, PP, etc.). Extended chunks are fully
reaursive structures, with an in principle unlimited number of embeddings. It would thus sem that the
full power of a context-freegrammar is necessary to deted such chunks, and a hierarchical data model
(more or lessequivalent to XML) is needed for their representation. However, the picture is smewhat
different when we look at each phrase type on its own, i.e. the embedding of noun phrases in larger
NPs, prepositional phrasesin larger P, etc. In practice such embeddings will rarely be more than two
levels degp. Table 1 presents evidencefor this claim obtained from the Frankfurter Rundschau corpus,
containing approx. 40 milli on words of newspaper text from the early 1990s. Only 1,144 out of more
than 12 million NPs identified by YAC are nested more than twice, and most of the NPs are nested
only once PRs diow an even lower degreeof reaursion, with only 20 phrases nested twice

nesting level NPs PP
0 10,647,350 3,895664
1 1,480170 28,675
2 38,238 20
>2 1,144 _

Table 1. Nesting level of (extended) noun chunks in the Frankfurter Rundschau corpus.

The “mild” degreeof reaursion found in real language data can be resolved explicitly, regarding bath
identification and annotation of the extended chunks. The non-reaursive rules introduced in Sedion 3
support asingle level of embedding. Querieslike (6) could again be made into rules for “ semi-simplé€”
NPs and PPs, which are then used to formulate queries for “complex” NPs and PFs with two levels of
embedding. Such queries ould be able to identify al PPRsin the Frankfurter Rundschau corpus, and
would missonly about one in 10,000 NPs. A much more flexible strategy for the identification of
mildly reaursive structures writes back smaller chunks and phrases into the @rpus as partial query
results. Query (7) can then be used asarulefor PRsat any level of embedding: as oon asall the nested
NPs and PPs are annotated in the arpus, (7) recgnises PFs of arbitrary complexity. Thus, instead of
having a set of similar rules for each nesting level, which are expanded into a huge regular expresson
by the query procesr, (7) and analogous rules for NPs and APs can be applied iteratively until the
desired degreeof nesting is reached, or until no larger structures are found.

(9) [ppmit [xp[ap Kleinen], [ap [pr Uber [py die KOpfe [yr, der Apostel]]] gesetzten] Flammen []

The hierarchical structure of the extended chunk annotations can also be resolved explicitly. Table 1
suggests that for most applications it will be sufficient to annotate only maximal phrases of each
category, which account for the majority of the corpus data. In order to represent nested phrases, an
additional phrase ategory is introduced for each level of embedding. Example (9) shows NPs
embedded once as “NP1”, NPs embedded twice as “NP2" etc. This representation of mildly reaursive
structures is compatible with the non-reaursive structural attributes of the IMS Corpus Workbench,
given that each of the maximal and embedded phrase types is encoded as a separate, independent s-
attribute. Embedded phrases just happen to be nested inside the @rresponding larger phrases.

5 Thearchitectureof YAC

In order to implement a chunk parser based on the principle of off-line analysis, we nealed a scripting
medchanism to automate the process of exeauting grammar rules in the form of CQP queries, and to
write back the (partial) query results to the wrpus in the form of new or updated structural attributes.
Since CQP is only available as a stand-alone tod for interactive work and does not provide any
scripting features, Perl was an ideal choice as a “glue’ language. In addition to its support for
communication with other programs (required bath for CQP and the newly developed tods for the
write-back annotation of s-attributes), Perl provides a wide range of string manipulation functions,
which proved useful in the post-processng of query results. As a necessary prerequisite, we had to
deveop Perl interfaces to CQP and the C library for dired corpus access These Perl modules are now
the main programming interfaces of the CWB.

Although it was suggested in the previous sdion that asingle set of rules, applied iteratively, would be
sufficient to huild complex structures, it turned out to be advantageous to divide the cdunking process
of YAC into threelevels asillustrated in Figure 3. The first level introduces lexical information and
annotates base dunks. The second level isthe main parsing level. Here, generic phrase structure rules
similar to the one shown in (7) are applied iteratively, with results written back to the crpus after each
iteration. At any given time, only the maximal phrases found up to this point are annotated in the
corpus. when a larger phrase is deteded, al embedded phrases of the same type are discarded. The
third level actsasafinishing level (cf. Sedion 5.3)

Each level isimplemented by a Perl script, based on alibrary of call-back functions. When the macro
representing a grammar rule has been exeauted, the query matches are automatically coll eded and can
be post-processed with arbitrary Perl code (most importantly, post-processng includes the partial dis-
ambiguation of morpho-syntactic annotations). Then, the results are added to the appropriate structural
attribute for the phrase type at hand. In this process existing phrases are automatically discarded when
they are embedded within a newly identified region, so that the required non-reaursivity of s-attributes
is always guaranteed.

Second
@ Level

Corpus First ————|Corpus|—— Third ——"——|Corpus
¥ ﬁ ¥ V

.

Figure 3. The threelevel annotation processof YAC.

When the parsing processis completed, only maximal phrases of each type are annotated in the crpus,
and no information about the nesting of PPs and NPs is encoded in the structural attributes. However,
asthe examplein (10) shows, amaximal PPcan be enbedded in a maximal NP, and viceversa.

(10) [np Die[ppauf ihren Artikel] stolze Linguistin] spricht [pp mit [y €inem Kollegen]] .
the of her paper proud linguist istalking with a colleague
‘the scientist who is proud of her paper istalking to a coll eague

In order to remver the full hierarchical structure of extended chunks, all intermediate phrases
constructed throughout the chunking processare @lleded in a text file. During an additional post-
processng step, phrases of all categories are @mbined into a single hierarchy, which is then serialised
toan XML file (cf. Sedion 6.1). Some @re hasto betaken in order to distinguish between truly nested
phrases and incompl ete phrases, which are annotated at some stages in the parsing processand should
not be included in the final hierarchical analysis. Sedion 5.4 explains how head markers are used to
make this distinction.

In principle, YAC can be applied to CWB-encoded corpora of any size. However, for corpora contain-
ing many millions of tokens, the @mnstant re-encoding and re-loading of structural attributes (which
may contain many milli ons of regions) adds up to a massve overhead. Therefore, large @rpora ae
split up into dlices of up to ane milli on tokens, each of which is processed separately. The results from
al chunks (including the reconstructed hierarchical analyses) are @lleded and can then be annotated in
the original corpus. This dicing strategy also helps to keg the memory foatprint of YAC moderately
sized, allowing us to run multiple parsing processesin parale. YAC achieves a typical parsing speed
of above one milli on tokens per hour, depending on platform and CPU performance

In the following, the threeparsing levels and the hierarchy-buil ding step are described in detail .

51 Thefirst level

In contrast to the seand level, the first level runs only once It can be seen as a preliminary stage for
the main parsing process As auch, it serves sveral purposes. (i) it annotates base-chunks, (i) it
annotates chunks with a spedfic internal structure, and (jii) it introduces lexical-semantic properties.

Base-chunks are kernels of phrasal structures or small non-reaursive diunks. The dunks are used asa
basis for the further annotation process Chunks with spedfic internal structures are base-chunks that
do not follow the general rule pattern of their category. Consequently, they neead spedal rules, which
are valid for a certain subclassof words only. A spedfic internal structure is usually triggered by the
lexical or semantic properties of the head. In other words, the properties of the head have an impact on
its behaviour, i.e., the head can sded spedfic modifiers or can build multi-word units. Temporal
nouns, e.g., can take spedfic noun modifiersin pre-head position (Ende September; end of September)
and spedfic adverbial and year dates in post-head position (Jahre spéter; years later; Juli 1999 July
1999. Adjacent proper nouns (NE) can be subsumed to named entiti es (Johann $bastian Bach). The
dependencies and relations within these cunks are local, i.e., they do not involve long distance
relations or complex (reaursive) embedding. Thus, it is aufficient to apply these rules only once

In addition to base-chunks and chunks with a spedfic internal structure, lexical and semantic informa-
tion isintroduced in thefirst level, and the base-chunks annotations are enriched with properties of the
phrasal heads. Lexical information can be introduced in two different ways: (i) within the grammar
rules themselves, (i) during post-processng by the Perl script. When a lexical property triggers a
spedfic internal structure, it is included dredly in the respedive rule in the form of a word list.
Otherwise, the word lists are cmpared to the head lemma of the phrase after exeauting the general

rules for the given category. If the lemma is found in one of the word lists, the lexical information is
added in the form of a set of features associated with the dunk.

5.2 Thesecond level

The seand level is the main parsing level. It includes relatively general and simple rules for each
phrasal category, which are applied repeatedly to model complex (reaursive) embedding. Example (11)
bel ow gives shematic descriptions of some (simplified) seaond level rules.

(1) a AP - AdvP?PP?AC
b. NP - Determiner? Cardinal? AP? NC
c. PP - Preposition NP

The AP pattern consists of an optional AdvP, an optional PP, and an AC as kerne of the phrase. The
NP rule includes an optional determiner, an optional cardinal, an optional AP, and an NC as kernd.
The PPrule mntains a preposition and an NP.

The rules are applied iteratively to build uplarger and larger structures, which can involve cmomplex
(reaursive) embedding. Thereby, the mmplexity of phrases is achieved by the enbedding of complex
structures (asin query (7)) rather than by complex rules (asin queries (4) and (6)). The samerulesthat
build smple dunks and phrases can be used for complex phrases — the differencelies Smply in the
complexity of the embedded structures. The NPs below differ greatly in their complexity, but bath
examples can be built with the samerules (11a) and (11b).

(120 a [npeine[apversténdiche] Sprache]
an understandable language
b. [np€eine[ap[pefur den Anwender] verstdndliche] Sprache]
a for the user understandable language
‘alanguage understandabl e for the user’

The rules of each phrasal category are mmbined into arule block, after which CQP is restarted to re-
load the newly annotated structures. Thus, the results of each rule block are immediately avail able to
the following rule blocks: the rules can build not only on the output of the first level and previous
iterations of the seaond level, but also on the output of previous rule blocks. This drategy reduces the
number of iterations needed in the second level by afactor of upto three sincethe bracketed phrasesin
(12b) can be annotated in a single pass (rather than the three passes which would otherwise be
necessary). Note that only the largest annotated structure of each phrasal category is avail able, though.

In contrast to many other approaches, YA C was designed to exploit various gedal casestoimproveits
analysis. In spedfic “seaure” contexts, constraints that are usually imposed on the generic rules can be
relaxed. For instance, the list of acceptable post-head modifiers can be extended to include PPs when
their attachment is disambiguated by parentheses or quotation marksin the text, cf. (13).

(13) a [np" Einladung [ppzur Enthauptung] "]
invitation tothe decapitation
b. [np dieschlagfertige™ Frau [ppmit den Hiten] "]
the quick-witted woman with the hats

The number of iterationsin the second level isin principleunlimited. Thelevel can berepeated until no
more larger structures are found. Experience has $iown, though, that threeiterations are sufficient to
cover the omplexity of all but the most contrived examples.

Thefact that the results of the rules are post-processed by Perl scripts all ows the overgenerali sation and
underspedfication of parts of the grammar. Constraints and filters can then be applied to the results,
either written diredly in Perl or using the interactive subsetting and search functions of CQP. Only
structures that satisfy these additional constraints and pass the filters are annotated in the @rpus.
Complex APs embedding PPor NP structures, e.g., are only built in a“seaure’” context, where they are
included in a larger NP with at least one other dement precaling the AP (cf. (14) below). This
particular constraint is tested by Perl code that scans the @ntext of the hypothesised AP.

(14) [npdie[ap[ppVvon der Gemahlin] [pp gegen das FulRgl zrisiko] empfohlenen] Socken
the of the wife against athletesfoat remmmended socks
‘the socks recommended by the wife againgt athlete’ s fodt’

5.3 Thethird level

The third leved can be seen as a finalising level and serves multiple purposes: (i) different phrasal
categories are united under one labd, (ii) coordination of maximal chunksis performed, (iii) dedsions
are made which nedl full knowledge of the chunks, and (iv) the ategory of certain chunksis changed.

During the parsing processsome phrasal categories are split up into several sub-categories. NPs, e.g.,
are split i nto NPs with determiner (NP), NPs without determiner (NCC), and base noun chunks (NC).
After the parsing processis completed, all threesub-categories are @mmbined into the category NP.

Adverbial and predicatively used adjedives are the same PoS-tag in the tag set used by YAC. They
can only be differentiated by their syntactic context when the dunking processhas been completed.
Adverbially used APs are enbedded as modifiersin other APs or NPs, whereas predicatively used APs
stand alone (as immediate cildren of a sentence or clause). The ategory of adverbially used APsis
changed accordingly to AdvP, and predicatively used APs are marked with the additi onal feature pred
in contrast to attributive APs, which are marked with the feature attr.

54 Constructing a hierarchical analysis

Sincethe CWB does not support reaursive or overlapping structures of the same ategory, thefull hier-
archical analysis of extended chunks has to be built after the actual parsing process In order to do so,
the intermediate and maximal structures from all stages of the parsing processare wlleded in atempo-
rary text file. Afterwards, a Perl script re-ordersthislist with resped to the position of each structurein
the wrpus, so that nested phrases immediately foll ow the mntaining phrase. It is then easy to combine
phrases of all categories into a single hierarchy. Since all intermediate structures are lleded, there
can be more than one version of the same phrase, representing dfferent phases of its construction asthe
examples (15a-c) show. Only the largest version isto beincluded in the hierarchical structure. In order
to determine whether a small er phrasal structureisan embedded phrase or only a shorter version of the
same phrase, the position of its head is used as areference point. In other words, only the largest one of
several overlapping structures with the same head is included in the hierarchy, while the smaller
versions are discarded. Overlapping structures with different head positi ons, on the other hand, are bath
included in the hierarchy as nested phrases. The examples below show overlapping NPs colleded
during the parsing process The token representing the head position is underlined in each case.

(15 a [wpFaszination]
fascination
b. [np gewise Faszination des Schattens]
catain fascination of the shadow
C. [np€inegewisse Faszination des Schattens]
a catain fascination of the shadow
d. [wp des Schattens]
of the shadow

The first three NPs dhare the same head (FasZnation), whereas the last one has a different head
(Schatten). Thus, the first two NPs (15a-b) are reagnised as incompl ete versions of (15¢), whil e (15d)
proves to be an embedded NP. The resulting hierarchical structureincludes only (15¢) and (15d):

(16) [npeinegewise Faszination [yp des Schattens]]
a catain fascination of the shadow

6 Storage, retrieval, and display

6.1 The XML output format

The results of the hierarchy construction step are @mnverted into an XML file whose dement treeis
isomorphic to the hierarchical syntactic analysis produced by YA C. Each phrase typeis represented by
appropriately named XML elements, e.g. <np> for noun phrases and <vc> for verbal complexes. The
various annotations of phrases (typically including features, head lemma, and partially disambiguated
morpho-syntactic information) are encoded as attributes of the respedive XML eements. Tokens are
represented by <t > elements and may include the values of one or more positional attributes from the
original corpus (in embedded <a> elements). Figure 4 shows a dightly simplified example of YAC's
XML output for the input sentence Lisa trocknet ihre wegen des Regens naseen Fife ab (‘Lisa is

rubbing her fed dry, which are wet because of therain’). The<t> eementsinclude word form, part-of-
speed, and lemma annotations, the word forms being underlined as a guide for the reader.

The predse document structure of the YA C output format depends on the phrase types and annotations
defined in the grammar, and does therefore not adhere to a fixed DTD. Although authors such as
(Mengel and Lezius 2000 would certainly see this flexibility as a disadvantage, we have found the
format reasonably human-readable, as well as convenient and efficient for further processng,
espedally with XSLT stylesheds. Such stylesheds can be used to transform the output of YAC into
HTML or other suitable formats for viewing, and to extract lexical and syntactic information.

<sid="s1234">
<np f="|ne|nogen|" h="Lisa" agr="|Akk:F:Sg]|...">
<t><a> Lisa <a>NE <a>Lisa</t>
</np>
<vc f="|norm|" h="abtrocknen">
<t><a> trocknet <a>VVFIN <a>trocknen</t>
<lc>
<np f="|norm|" h="FuR3" agr="|Akk:M:PI|...">
<t><a> ihre <a>PPOSAT <a>ihr</t>
<ap f="[attr|pp|" h="naR" agr="|Akk:F:PI|...">
<pp f="|norm|" h="wegen:Regen" agr="|Gen:M:Sg|Gen:N:Sg|">
<t><a> wegen <a>APPR <a>wegen< /t>
<np f="|norm|" h="Regen" agr="|Gen:M:Sg|Gen:N:Sg|">
<t><a> des <a>ART <a>d</t>
<t><a> Regens <a>NN <a>Regen</t>
</np>
</pp>
<t><a> nassen <a>ADJA <a>nal3</t>
</ap>
<t><a> FilRe <a>NN <a>FuB</t>
</np>
<t><a> ab <a>PTKVZ <a>ab</t>
<t><a> . <a>$. <a>.</t>
</s> -

Figure 4. XML output of YAC (simplified example).

6.2 TIGERSearch

A much more powerful tod for displaying and searching hierarchical annotationsisthe TIGERSearch
software (Kénig and Lezius 200Q Lezius 2002. Wolfgang Lezius kindly provided an import filter for
the YAC format, and we have been using the TIGERSearch environment to display the hierarchical
annotations of complex phrases. The TIGERSearch query language was designed for the full syntactic
analysis of a complex grammar formalism or a manually annotated treebank. Its expressvenessis
rarely needed for the relatively simple and shall ow structures identified by YAC. So far, we haverdied
mostly on stylesheds and CQP queries (as described in the foll owing sedion) for data extraction.

6.3 IMSCorpusWorkbench

In order to make the full hierarchical analyses of YAC available to the Corpus Workbench, it was
necessary to extend its encoding tod with comprehensive support for XML markup. XML eementsare
stored in structural attributes with corresponding names (e.g., <np> elementsin the “np” attribute). As
sugeested in Sedion 4, reaursion of eements with the same name, e.g. <np>, isresolved by automatic
renaming of the enbedded elementsto <np1>, <np2>, etc. When the nesting exceels a pre-determined
threshold, the most deeply nested elements are discarded. The attributes of XML elements (attribute-
value pairs in start tags) are parsed and assgned to implicitly defined s-attributes, following a simple
naming convention. Thus, <np> eementswith their f , h, and agr attributes are stored in s-attributes

“np”, “np_f", “np_h", and “np_agr”, wherethey are esily accessed from CQP queries (cf. Evert 2003.

The feature-set support of CQP is a distinct advantage over XSLT and TIGERSearch. It can be used to
test whether a phrase is annotated with a certain feature such as attr, and gves accessto the partially
disambiguated morpho-syntactic annotations in the agr attributes of NPs, PFs, and APs. Most CQP
queries will use maximal phrases (of each category) only, but the nesting of different categories can be
modell ed with balanced start and end tagsin a query. A non-trivial exampleis (17), which matches a
PPembedded in a maximal NP with the head lemma Kaffee and a genitive NP in post-head positi on:

(17) <np_h "Kaffee"> [I* (<pp> |<pp1>) [+ (</pp1>|</pp>)
[+ <np_agrl matches "Gen:.*'> [|+ </np_agrl> </np_h>;

2 Seehttp://www.ims.uni-stuttgart.de/projekte/ TIGER/TIGERSeach/ for further information and avail abilit y.

(Kermes 2003 uses large mlledions of similar queries, again with Perl as a scripting and post-
processng language, to extract evidencefor linguistic and lexicographic phenomena from YA C-parsed
text corpora. Although CQP isauseful tod for interactive queries and information extraction, itskwic-
style output, which displays gructure boundaries as XML tags, ishardly suitable for hierarchical phrase
structure annotations. For the crpus linguist and lexicographer, a concise |abell ed-bracketing notation
might be the best choice However, different applications have different needs. Sometimes it will be
necessary to display the head lemma, or indicate the presence of certain features and morpho-syntactic
properties in various ways (e.g. show attributively and predicatively used APs in different colours, or
highlight all genitive NPs). Sometimes, a tabular or treestructured display will be more appropriate.
Sometimes, it is aufficient to show only the token sequences matching a query and display a variable
amount of context in a separate window when requested. What is needed, thus, is not an all-in-one
solution, but a display framework that can be easily and quickly adapted to spedfic user needs.

4

HTTP

HTTP Server

Client

— [Prees | | CGl
« [Fwipege | | Script

(Perl)
<4— | Interactive
Communication

Figure 5. Typical architedure of aweb interfaceto the CWB.

A
v

CQP

We believe that a web interface to the IMS Corpus Workbench provides sich a general framework
(Figure5). CGI scripts written in Perl use the Perl-CQP interfaceto exeaute queries, and transform the
query resultsinto a suitable HTML display. The powerful string-manipulation faciliti es of Perl make it
easy to implement many different views of the same data. An additional benefit is the dient-server
architedure of such aweb interface, which gives accessto CWB corpora even from platforms that are
currently not supported (all that is neaded isan HTTP server running on a supported platform). Some
examples can be found at http://www.ims.uni-stuttgart.de/projekte/ CorpusWorkbench/Demos/.

7 References
Abney S 1996a. Churk stylebodk. Working draft.

Abney S1996b. Partial parsing viafinite-state ascades. In Proceeadings of the ESS LI '96 Robust
Parsing Workshop.

Christ O 1994 A modular and flexible architedure for an integrated corpus query system. In Papersin
Computationd Lexcography COMPLEX’ 94, Budapest, Hungary, pp 2232

Eckle-Kohler 31999 Lingustisches Wissen zur automatischen Lexikon-Akquisition aus deutschen
Texcorpora. Berlin, Logos Verlag.

Evert S2003 The CQP Query Languagp Tutorial. Technical Report, University of Stuttgart.

Kermes H 2003 Off-line (and online) text andysis for computationd lexcography. PhD thesis, IMS,
University of Stuttgart, to appear.

Kermes H, Evert S2003 Text analysis meds corpuslinguistics. In Procealings of Corpus Linguistics
2003 Lancaster, UK.

Konig E, Lezius W 200Q A description language for syntacticall y annotated corpora. In Proceeadings of
COLING 200Q Saabriicken, Germany, pp 1056106Q

LeziusW 2002 Ein Suwchwerkzeug fir syntaktisch anndierte Texkorpora. PhD thesis, IMS, University
of Stuttgart. Arbeitspapiere des Ingtituts fir Maschinelle Sprachverarbeitung (AIMS), volume 8,
number 4.

Mengd A, LeziusW 2000 An XM L-based representation format for syntactically annotated corpora.
In Procealings of the Second Internationa Conference on Languag Resources and Engineeaing
(LREC), Volume 1, Athens, Greecepp. 121-126.

10

