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Abstract

This paper presents methods for a qual-
itative, unbiased comparison of lexical
association measures and the results we
have obtained for adjective-noun pairs
and preposition-noun-verb triples ex-
tracted from German corpora. In our
approach, we compare the entire list
of candidates, sorted according to the
particular measures, to a reference set
of manually identified “true positives”.
We also show how estimates for the
very large number of hapaxlegomena
and double occurrences can be inferred
from random samples.
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sures (AMs). Based on these requirements, we
introduce an experimentation procedure, and dis-
cuss the evaluation results for a number of widely
used AMs. Finally, methods and strategies for
handling low-frequency data are suggested.

The measurés— Mutual Information (/1)
(Church and Hanks, 1989), the log-likelihood
ratio test (Dunning, 1993), two statistical tests:
t-test andy2-test, and co-occurrence frequency —
are applied to two sets of data: adjective-noun
(AdjN) pairs and preposition-noun-verb (PNV)
triples, where the AMs are applied to (PN,V)
pairs. See section 3 for a description of the base
data. For evaluation of the association measures,
n-best strategies (section 4.1) are supplemented
with precision and recall graphs (section 4.2) over
the complete data sets. Samples comprising par-
ticular frequency strata (high versus low frequen-
cies) are examined (section 4.3). In section 5,

In computational linguistics, a variety of (statis- nethods for the treatment of low-frequency data,

tical) measures have been proposed for identifysing|e (hapaxlegomena) and double occurrences
ing lexical associations between words in lexi-are discussed. The significance of differences be-
cal tuples extracted from text corpora. Methodsyyeen the AMs is addressed in section 6.

used range from pure frequency counts to infor-

mation theoretic measures and statistical signifio  The Qualitative Evaluation of

cance tests. While the mathematical properties of  Association Measures

those measures have been extensively discussed,

the strategies employed for evaluating the iden2.1 State-of-the-art

tification results are far from adequate. Anothera siandard procedure for the evaluation of AMs is
crucial but still unsolved issue in statistical col- manual judgment of the-best candidates identi-
location identification is the treatment of IoW- fiaqin a particular corpus by the measure in ques-

frequency data. _ _ tion. Typically, the number of true positives (TPSs)
In this paper, we first specify requirements for a_—

qualitative evaluation of lexical association mea- “For a more detailed description of these measures

- and relevant literature, see (Manning and i8zh, 1999,

chapter 5) orhttp://www.collocations.de/EK/

where several other AMs are discussed as well.

1See for instance (Manning and $the, 1999, chap-
ter 5), (Kilgarriff, 1996), and (Pedersen, 1996).



among the 50 or 100 (or slightly more) highestspect to syntactic homogeneity and grammatical
ranked word combinations is manually identifiedcorrectness. Both candidate sets have been man-
by a human evaluator, in most cases the autharally inspected for TPs.

of the paper in which the evaluation is presented. The first set comprises bigrams of adjacent,
This method leads to a very superficial judgmentemmatized AdjN pairs extracted from a small
of AMs for the following reasons: (816 203 word) corpus of freely available Ger-
(1) The identification results are based on smallan law texts’ Due to the extraction strategy, the
subsets of the candidates extracted from the cogtata are homogeneous and grammatically correct,
pus. Consequently, results achieved by individi.e., there is (almost) always a grammatical de-
ual measures may very well be due to chance (cfpendency between adjacent adjectives and nouns
sections 4.1 and 4.2), and evaluation with respedh running text. Two human annotators indepen-
to frequency strata is not possible (cf. sectiondently marked candidate pairs perceived as “typ-
4.3). (2) For the same reason, it is impossiblécal” combinations, including idioms(die) hohe
to determine recall values, which are importantSee ‘the high seas’), legal termsiffle Nachrede
for many practical applications. (3) The introduc-‘slander’), and proper nameR¢tes Kreuz‘Red

tion of new measures or changes to the calculatioCross’). Candidates accepted by either one of the
methods require additional manual evaluation, agnnotators were considered TPs.

newn-best lists are generated. The second set consists of PNV triples ex-
tracted from an 8 million word portion of the
Frankfurter Rundschau Corglysin which part-
To improve the reliability of the evaluation re- of-speech tags and minimal PPs were identified.
sults, a number of properties need to be conTpe pNV triples were selected automatically such
trolled. We distinguish between two classes:  that the preposition and the noun are constituents
(1) Characteristics of the set of candidate datgf the same PP, and the PP and the verb co-occur
employed for collocation identification: (i) the \yithin a sentence. Only main verbs were con-
syntactic homogeneity of the base data, i.e.gidered and full forms were reduced to ba&es.
whether the set of candidate data consists only ofphe PNV data are partially inhomogeneous and
adjective-noun, noun-verb, etc. pairs or whetheg,t fylly grammatically correct, because they in-
different types of word combinations are mixed; cjude combinations with no grammatical relation
(i) the grammatical status of the individual word petween PN and V. PNV collocations were man-
combinations in the base set, i.e., whether the)é,a”y annotated. The criteria used for the dis-
are part of or constitute a phrase or simply coqjnction between collocations and arbitrary word
occur within a given text window; (iii) the per- compinations are: There is a grammatical rela-
centage of TPs in the base set, which is typicallfjon petween the verb and the PP, and the triple
higher among high-frequency data than amongan pe interpreted as support verb construction
low-frequency data. and/or a metaphoric or idiomatic reading is avail-
(2) The evaluation strategies applied: Insteadypje, e.g.zur Verfigung steller(at the availabil-

of examining only a small sample aFbest can- ity put, ‘make available’)am Herzen liegergat
didates for each measure as itis common practic@qe heart lie, ‘have at heart).

we make use of recall and precision valuesrfor
best samples of arbitrary size, which allows us to *see (Schmid, 1995) for a description of the part-of-
plot recall and precision curves for the whole setspeech tagger used to identify adjectives and nouns in the

f did d dditi .corpus
of candidate data. In addition, we compare preci- “The Frankfurter Rundschau Corpus is part of the Euro-

2.2 Requirements

sion curves for different frequency strata. pean Corpus Initiative Multilingual Corpus I.
5See (Skut and Brants, 1998) for a description of the tag-
3 The Base Data ger and chunker.

6Mmorph (ISSCO/SUISSETRA, Geneva, Switzerland)
The base data for our experiments are extractelfs been employed for determining verb infinitives.

f ¢ hich diff ith t0 si For definitions of and literature on idioms, metaphors
rom two corpora which diiier with respect 1o size g support verb constructions (Funktionsverbige) see

and text type. The base sets also differ with refor instance (BuRmann, 1990).



AdjN data PNV data whereas the t-test competes with log-likelihood,
total 11 087 total 294 534 especially for larger values of. Frequency leads
f=>2 4652| f>3 14 654 to clearly better results thal I andy?, and, for
colloc. 15.84%|| colloc. 6.41% n = 500, comes close to the accuracy of t-test and

(f >2) =737 (f=3) =939 log-likelihood.
Table 1: Base sets used for evaluation Adjective-Noun Combinations

n =100 | n = 500

. : Log-Likelihood 65.00% | 42.80%
General statistics for the AdjN and PNV base
) t-Test 57.00% | 42.00%

sets are given in Table 1. Manual annotation was | ~, 0 0
performed for AdjN pairs with frequency > 2 X 36.00% | 34.00%

1 0 0
and PNV triples withf > 3 only (see section II\:/IutuaI Information gigg;’ Zigg;’
5 for a discussion of the excluded low-frequency requency U0 70
candidates). Table 2: Precision values forbest AdjN pairs.

4 Experimental Setup

After extraction of the base data and manualiden4.2  Precision and Recall Graphs
tification of TPs, the AMs are applied, resulting in
an ordered candidate list for each measure (henc
forth significance listSL). The order indicates the

degree of collocativity. Multiple candidates with

identical scores are listed in random order. This is
necessary, in particular, when co-occurrence fre

guency is used as an association measure.

For a clearer picture, however, larger portions of
fhe SLs need to be examined. A well suited means
for comparing the goodness of different AMs are
the precision and recall graphs obtained by step-
wise processing of the complete SLs (Figures 1 to
€10 below)?

The z-axis represents the percentage of data
4.1 N-Best Lists processed in the respective SL, while the
axis represents the precision (or recall) values
achieved. For instance, the precision values for

= 100 andn = 500 for the AdjN data can be
ead from they-axis in Figure 1 at positions where

= 2.15% andx = 10.75% (marked by verti-
aI lines). The dotted horizontal line represents
call). While precision measures the quality of thethe. percentage of true collocations in the basg §et.
n-best lists produced, recall measures their cov This value corresponds to the expected precision
value for random selection, and provides a base-

erage, i.e., how many of all true collocations in
line for the interpretation of the precision curves.
the corpus were identified. The most problematlc
General findings from the precision graphs are:

aspect here is that conclusions drawn frerhest |~ " : ,
() It is only useful to consider the first halves

lists for a single (and often small) value ofare of the SL h imate aft
only snapshots and likely to be misleading. € obs, as e measures approx;ma € aner-
wards. (ii) Precision of log-likelihoody~, t-test

For instance, considering the set of AdjN base" df : N d the first part
data withf > 2 we might arrive at the following and frequency strongly decreases in the first par

results (Table 2 gives the precision values of the of thf SLstWF:erefas gremsmln 811 remains al-
n highest ranked word combinations with = most constant (c igure 1) or even increases

100, 500): As expected from the results of othersnghtly (cf. Figure 2). (iii) The identification re-

studies (e.g. Lezius (1999)), the precision\d sults are instable for the first few percent of the
is significantly lower than that of log-likelihodd, data, with log-likelihood, t-test and frequency sta-
R — bilizing earlier tham/ I andy?, and the PNV data

In this approach, the set of thehighest ranked
word combinations is evaluated for each measure
and the proportion of TPs among thisbest list
(the precision is computed. Another measure of
goodness is the proportion of TPs in the base data
that are also contained in thebest list (there-

8This is to a large part due to the fact theft/ systemati- _— —
cally overestimates the collocativity of low-frequency pairs,  °Colour versions of all plots in this paper will be avail-
cf. section 4.3. able fromhttp://www.collocations.de/EK/
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Figure 1: Precision graphs for AdjN data.
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stabilizing earlier than the AdjN data. This in-
stability is caused by “random fluctuations”, i.e.,
whether a particular TP ends up on ramkand
thus increases the precision of thebest list) or
on rankn + 1. Then-best lists for AMs with low Examining the precision and recall graphs in
precision valuesX/I, x?) contain a particularly more detail, we find that for the AdjN data (Fig-
small number of TPs. Therefore, they are moreure 1), log-likelihood and t-test lead to the best re-
susceptible to random variation, which illustratessults, with log-likelihood giving an overall better
that evaluation based on a small numbenddest result than the t-test. The picture differs slightly
candidate pairs cannot be reliable. for the PNV data (Figure 2). Here t-test outper-
With respect to the recall curves (Figures 3 andorms log-likelihood, and even precision gained
4), we find: (i) Examination of 50% of the data by frequency is better than or at least comparable
in the SLs leads to identification of between 75%to log-likelihood. These pairings — log-likelihood
(AdjN) and 80% (PNV) of the TPs. (ii) For the and t-test for AdjN, and t-test and frequency for
first 40% of the SLs)M I andy? lead to the worst PNV — are also visible in the recall curves (Fig-
results, withy? outperformingM/ 1. ures 3 and 4). Moreover, for the PNV data the

Figure 4: Recall graphs for PNV data.



70%

t-test leads to a recall of over 60% when approx. precision
20% of the SL has been considered. o | 1
In the Figures above, there are a number of po-
sitions on ther-axis where the precision and re-
call values of different measures are almost iden- 4, |
tical. This shows that a simple-best approach
will often produce misleading results. For in- %]
stance, if we just look at the first 30% of
the SLs for the PNV data, we might conclude
that the t-test and frequency measures are equally® 1

50% 4 1§

20% A

well suited for the extraction of PNV collocations. o rddds
However, the full curves in Figures 2 and 4 show 0% 10% 20% 30% 40% 50% 6% 70% 0% o056 100%
that t-test is consistently better than frequency. =~ —frewen -ttt -=-loglikdinood - --x* - —M
4.3 Frequency Strata Figure 5: AdjN data withf > 5.
While we have previously considered data froma

broad frequency range (i.e., frequencigs> 2 pyJﬁecision

for AdjN and f > 3 for PNV), we will now
split up the candidate sets into high-frequency and
low-frequency occurrences. This procedure al- ,, .
lows us to assess the performance of AMs within
different frequency strata. For instance, there is 5 1
a widely held belief thaf\/ I andy? are inferior N adpag gt
to other measures because they overestimate thesxw -
collocativity of low-frequency candidates (cf. the
remarks on the2 measure in (Dunning, 1993)).  10% -
One might thus exped/ I andy? to yield much
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o\ el
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better results for higher frequencies. 0% — 77—
L. . . 0% 10% 20% 30% 40% 50% 60% ;Pofgfs?o‘r;/i?ica?r?g/glisﬁomﬁ
We have divided the AdjN data into two sam- " | - iogikeinon oo omeaneelst
pleswithf > 5 (high frequencies) ar2l< f < 5
(low frequencies), because the number of data Figure 6: PNV data with’ > 10.

in the base sample is quite small. As there are

enough PNV data, we used a higher threshold and

selected samples with > 10 (high frequencies)  Surprisingly, the precision curves gf and in
andf = 3,4 (low frequencies). particular M I increase over the first 60% of the
SLs for high-frequency PNV data, whereas the
curves for t-test, log-likelihood, and frequency
Considering our high-frequency AdjN data (Fig- have the usual downward slope (see Figure 6).
ure 5), we find that all precision curves decline ad-og-likelihood achieves precision values above
more of the data in the SLs is examined. Espe50% for the first 10% of the list, but is outper-
cially for M1, this is markedly different from the formed by the t-test afterwards. Looking at the
results obtained before. As the full curves showfirst 40% of the data, there is a big gap between
log-likelihood is obviously the best measure. Itthe good measures (t-test, log-likelihood, and fre-
is followed by t-test,x?, frequency and\/I in  quency) and the weak measureg @nd M1I).
this order. Frequency and/ I approximate when In the second half of the data in the SLs, how-
50% of the data in the SLs are examined. In theever, there is virtually no difference betwegfl,
remaining part of the lists)/7 yields better re- 2, and the other measures, with the exception of
sults than frequency and is practically identical tomere co-occurrence frequency.

the best-performing measures. Summing up, t-test — with a few exceptions

High Frequencies



around the first 5% of the data in the SLs —precision values are not significantlydifferent
leads to the overall best precision results forfrom the baseline obtained by random selection.
high-frequency PNV data. Log-likelihood is sec- In contrast to our expectation stated at the be-
ond best but achieves the best results for highginning of this section, the performance bf I

frequency AdjN data. andy? relative to the other AMs igot better for
high-frequency data than for low-frequency data.
Low Frequencies Instead, the poor performance observed in section
4.2 is explained by the considerably higher base-
4% line precision of the high-frequency data (cf. Fig-

precision

ures 5to 8): unlike the-best lists for “frequency-
sensitive” measures such as log-likelihood, those
of M andy? contain a large proportion of low-
frequency candidates.

|
30%'.
v

20% A

5 Hapaxlegomena and Double
Occurrences

10% A

As the frequency distribution of word combina-

3372 candidates tions in texts is characterised by a large number
P s 1% 2% 0% 0% % ed%p;rftiogfs%ﬁgﬁicgéggnsltoo% of rare events, low-frequency data are a serious
—frequency  eeeettest  ---loglikelibood - --x? =M challenge for AMs. One way to deal with low-
frequency candidates is the introduction of cut-
Figure 7: AdjN data with2 < f <5. off thresholds. This is a widely used strategy,

and it is motivated by the fact that it is in gen-
eral highly problematic to draw conclusions from

10% low-frequency data with statistical methods (cf.
precision Weeber et al. (2000) and Figure 8). A practical
reason for cutting off low-frequency data is the
k;%mm~--_-~;,;;7fe need to reduce the amount of manual work when
10165 candidates the complete data set has to be evaluated, which
O o 1o ar S ae S o o o o, 100% is a precondition for the exact calculation of recall
ey el ——loglikeliioon o and for plotting precision curves.
The major drawback of an approach where all
Figure 8: PNV data witly = 3, 4. low-frequency candidates are excluded is that a

large part of the data is lost for collocation extrac-
tion. In our data, for instance, 80% of the full set
of PNV data and 58% of the AdjN data are ha-

axes. Thus it is important to know how many

and which) true collocations there are among the
excluded low-frequency candidates.

Figures 7 and 8 show that there is little differ-
ence between the AMs for low-frequency data,
except for co-occurrence frequency, which lead
to worse results than all other measures.

For AdjN data, the AMs at best lead to an im-
provement of factor 3 compared to random selecs 1 statistical Estimation of TPs among
tion (when up tox~ 4% of the SL is examined, Low-Frequency Data
log-likelihood achieves precision values above ) ] ]

30%). Log-likelihood is the overall best measure!n this section, we estimate the number of col-
for identifying AdjN collocations, except fat- locations in the data excluded from our experi-

coordinates between 15% and 20% where t-ted'€NtS (i-€., AdiN pairs withf = 1 and PNV
outperforms log-likelihood. triples with f = 1, 2). Because of the large num-

For PNV data, the curves of all measures (ex_ber of candidates in those sets (6 435 for AdjN,

cept for frequency) are nearly identical. Their *°According to thex*-test as described in section 6.



10%

279 880 for PNV), manual inspection of the en-
tire data is impractical. Therefore, we use ran- Pf\\cisiO”
dom samples from the candidate sets to obtain es-

timates for the proportiop of true collocations

among the low-frequency data. We randomly se- NP ”

lected 965 items (15%) from the AdjN hapaxes, o o s s s son 7o s s 10006
and 983 items~ 0.35%) from the low-freqQUENCY  _requongys  «evettet ——- loglikelinont —on oy
PNV triples. Manual examination of the samples

yielded 31 TPs for AdjN (a proportion of 3.2%) Figure 9: PNV data witlf = 1, 2.

and 6 TPs for PNV (0.6%).

Considering the low proportion of collocations
in the samples, we must expect highly skewednight succeed in extracting a substantial num-
frequency distributions (wherg is very small), ber of collocations from the low-frequency PNV
which are problematic for standard statisticaldata. Figure 9 shows precision curves for the
tests. In order to obtain reliable estimates, welO 000 highest ranked word combinations from
have used an exact test based on the followin§ach SL for PNV combinations withf = 1,2
model: Assuming a proportignof TPs in the full (the vertical lines correspond te-best lists for
low-frequency data (AdjN or PNV), the number 7 = 1000,2000, 5000).
of TPs in a random sample of si2éis described In order to reduce the amount of manual work,
by a binomially distributed random variabl§ the precision values for each AM are based on

with parameterp.!! Consequently, the proba- @ 10% random sample from the 10 000 highest
bility of finding & or less TPs in the sample is ranked candidates. We have applied the statisti-
Py(X <k)= Zf:o (N)pj(l —p)N—J. We ap- cal test described above to obtain confidence in-
ply a one-tailed statistical test based on the probdervals for the true precision values of the best-
bilities P,(X < k) to our samples in order to ob- Performing AM (frequency), given our 10% sam-

tain an upper estimate for the actual proportion ofle. The upper and lower bounds of the 95% con-

collocations among the |OW_frequency data: théidence intervals are shown as thin lines. Even
estimatep < p, is accepted at a given signifi- the highest precision estimates fall well below the

cance level if P, (X < k) < a. 6.41% precision baseline of the PNV data with
In the case of the AdjN datd(= 31, N = [ = 3. Again, we conclude that the exclusion of

965), we find thap < 5% at a confidence level of low-frequency candidates was well justified.
99% (@ = 0.01). Thus, there should be at most
320 TPs among the AdjN candidates wjth= 1.
Compared to the 737 TPs identified in the AdjNwe have assessed the significance of differences
data with f > 2, our decision to exclude the ha- petween AMs using the well-knowy? test as de-
paxlegomena was well justified. The proportionscribed in (Krenn, 2000% The thin lines in Fig-
of TPs in the PNV samplek(= 6, N = 983)  ure 10 delimit 95% confidence intervals around
was much lower and we find that < 1.5% at  the best-performing measure for the AdjN data
the same confidence level of 99%. However, dugyith f > 2 (log-likelihood).
to the very large number of low-frequency candi-  There is no significant difference between log-
dates, there may be as many as 4200 collocationgkelihood and t-test. And only forn-best lists
in the PNV data withf = 1,2, more than 4 times  \ith n ~ 1 000, frequency performs marginally
the number identified in our experiment. significantly worse than log-likelihood. For the

It is imaginable, then, that one of the AMs PNV data (not shown), the t-test is signifi-
"I be precise, the binomial distribution is itself an ap- CANUY better than log-likelihood, but the differ-

proximation of the exact hypergeometric probabilities (cf. €nce between frequency and the t-test is at best

Pedersen (1996)). This approximation is sufficiently accu-marginally significant.

rate as long as the sample sixeis small comparedtothe ——__—  °

size of the base set (i.e., the number of low-frequency candi- *?See (Krenn and Evert, 2001) for a short discussion of
dates). the applicability of this test.

6 Significance Testing
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