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Authorship attribution
(Juola 2006; Koppel et al. 2008; Stamatatos 2009)

I Identify unknown author or settle case of disputed authorship
I Federalist papers: Hamilton vs. Madison

(Mosteller and Wallace 1963)
I Did Shakespeare really exist?
I Robert Galbraith (The Cuckoo’s Calling) = J. K. Rowling

http://www.scientificamerican.com/article/how-a-computer-
program-helped-show-jk-rowling-write-a-cuckoos-calling/

I Which stylometric features determine the characteristic style of
a literary author?

I authorship attribution as a proxy task
I “successful” features Ü particularly characteristic for author

http://www.scientificamerican.com/article/how-a-computer-program-helped-show-jk-rowling-write-a-cuckoos-calling/
http://www.scientificamerican.com/article/how-a-computer-program-helped-show-jk-rowling-write-a-cuckoos-calling/
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Authorship attribution
(Juola 2006; Koppel et al. 2008; Stamatatos 2009)

I Authorship attribution as classification task
I closed set of candidate authors for unkown text
I training set of texts with known authorship
I evaluation: classification accuracy

I Authorship attribution as clustering task
I given set of unknown texts
I group texts written by same author into cluster
I evaluation: adjusted Rand index (ARI)

+ more general approach
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Authorship attribution
(Juola 2006; Koppel et al. 2008; Stamatatos 2009)

I Popular approach: supervised machine learning
I wide range of stylometric features
I ML trained on texts with known authorship
I feature selection & weighting

I But not suitable for clustering task
I no supervised training data available
I clustering based on stylometric distance between texts (metric)
I no easy way to determine feature weights for metric

I Simple Delta measure (Burrows 2002) very successful
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Burrows’s Delta (∆B)
(Burrows 2002)

I Frequencies of 100 – 5,000 most frequent words (MFW)
form a “fingerprint” of an author’s style

I Standardized to z-scores to give each word equal weight

the and to of a I in was that he her
f(Madding Crowd) = (.051, .029, .026, .027, .027, .016, .016, .014, .011, .008, .010, . . .)
f(Tess of the d’U.) = (.053, .027, .027, .028, .020, .013, .015, .014, .012, .009, .018, . . .)

f(Oliver Twist) = (.055, .032, .024, .023, .022, .012, .014, .011, .011, .013, .005, . . .)

0.
01

0.
02

0.
03

0.
04

0.
05

Hardy: Far from the Madding Crowd
Hardy: Tess of the d'Urbervilles
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I Frequencies of 100 – 5,000 most frequent words (MFW)
form a “fingerprint” of an author’s style

I Standardized to z-scores to give each word equal weight
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The family of Delta measures
(Burrows 2002; Hoover 2004; Argamon 2008; Smith and Aldridge 2011)

I Burrows’s Delta = Manhattan distance (Burrows 2002)

∆B(D, D′) = ‖z(D)− z(D′)‖1 =
nw∑
i=1
|zi(D)− zi(D′)|

I Quadratic Delta = Euclidean distance (Argamon 2008)

∆Q(D, D′) = ‖z(D)− z(D′)‖22 =
nw∑
i=1

(zi(D)− zi(D′))2

I Cosine Delta = angular distance (Smith and Aldridge 2011)

cos∆∠(D, D′) =
∑nw

i=1 zi(D) · zi(D′)
‖z(D)‖2 · ‖z(D′)‖2
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Experiments
„In theory, theory and practice are the same. In practice, they are not.“

I Empirical study based on data of Jannidis et al. (2015)
I corpora of English, German and French novels
I 75 novels per corpus: 3 novels each from 75 authors
I early 19th C. to middle of 20th C.

I Exp. 1: Understanding the parameters of Delta measures
I Exp. 2: How much data are needed?
I Exp. 3: Supervised feature selection



Understanding the parametern of Delta

Prior work by Jannidis et al. (2015)
I Novels grouped into 25 clusters based on Delta distances
I All known Delta measures for nw = 100, 1000, 5000 MFW
I Evaluation: within/between distances, cluster purity
I Best results: Cosine Delta ∆∠ (Smith and Aldridge 2011) and

the original Burrows Delta ∆B (Burrows 2002)
I Mathematically sensible variants of Delta (Argamon 2008) are

much worse than ∆B

New results (Evert et al. 2015)
I Detailed plots of nw for ∆B, ∆Q and ∆∠

I Systematic experiments with different parameters of Delta
I Evaluation: adjusted Rand index (Hubert and Arabie 1985)
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Parameter: Standardization of relative frequencies
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Parameter: Standardization of relative frequencies
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Parameter: Standardization of relative frequencies
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Parameter: Normalization of vector length
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Parameter: Normalization of vector length
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Parameter: Normalization of vector length
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Why is vector normalization so important?
−

1
0

1
2 Hardy: Far from the Madding Crowd

Hardy: Tess of the d'Urbervilles

I Feature vector z(D) = stylistic “fingerprint” of author
I Our conjecture: pattern of positive/negative deviations from

norm reflects individual stylistic profile of an author
I Vector length = degree to which individual style is expressed
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Learning curves
I All experiments carried out on complete novels so far

I Does authorship attribution also work for shorter texts?
+ experiments with Cosine Delta ∆∠ and nw = 2000 MFW
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Learning curves: Clustering task

all texts shortened to specified number of word tokens



Learning curves: Classification task

one text shortened, other texts used as training data



Finding the key words: recursive feature elimination

I Greedy algorithm for selection of an optimal set of features

I Procedure:
I train linear support vector machine (SVM)
I based on [0, 1]-scaled relative frequencies (not on z-scores)
I discard k features with lowest SVM weights

I Iterative reduction of feature set
1. all recurrent words (df > 1)
2. down to nw = 50,000 (k = 10,000)
3. down to nw = 5,000 (k = 1,000)
4. down to nw = 500 (k = 100)
5. find minimal feature set by cross-validation (k = 1)



Automatically selected features
Document frequencies (df ) of selected features

English (nw = 233) German (nw = 240) French (nw = 370)

I Many function words, but also content words (Ü overtraining)

I Some text artefacts: Roman numerals (xl, xxxvii) in novels
with many chapters, graphemic variation (e.g. DE gibt / giebt)

I Key words for English novels: with, so, t, But, And, upon, don,
head, Then, looking, almost, indeed, nor, London, feel,
cannot, . . . , XXXVII (df = 34), XLI (df = 29), XLIII
(df = 26), hereabout (df = 11), vilest (df = 15), contours
(df = 9), Ecod (df = 4)
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Validation

I Validation of German features on unseen test sets

I Test set A: classification
I 71 unseen novels from 19 of the 25 authors
I unbalanced, with singleton authors
I Maximum Entropy classifier trained on German corpus
I result: 97% classification accuracy

I Test set B: clustering
I 155 unseen novels from 34 authors (6 seen, 28 unseen)
I clustering based on Cosine Delta into 34 groups
I result:

features ARI
240 selected 87%
2000 MFW 83%
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Conclusion & outlook

Further reading
Evert, Stefan; Proisl, Thomas; Jannidis, Fotis; Pielström, Steffen; Schöch,
Christof; Vitt, Thorsten (2015). Towards a better understanding of
Burrows’s Delta in literary authorship attribution. In Proceedings of the
Fourth Workshop on Computational Linguistics for Literature, Denver, CO.

Next steps
I Consistency: do fragments of the same text cluster?
I Performance on selected parts of speech (e.g. function words)
I Pre-processing: lemmatization, stem + suffix, . . .

Intepretation of Delta
I Identify features with largest contribution to ∆ clustering
I Delta measures based on general stylometric features
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