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Abstract
In this paper, we describe an alternative to the kappa
statistic for measuring intercoder agreement. We
present a model based on the assumption that the
observed surface agreement can be divided into
(unknown amounts of) true agreement and chance
agreement. This model leads to confidence inter-
val estimates for the proportion of true agreement,
which turn out to be comparable to confidence in-
tervals for the kappa value. Thus we arrive at a
meaningful alternative to the kappa statistic. We
apply our approach to measuring intercoder agree-
ment in a collocation annotation task, where human
annotators were asked to classify PP-verb combina-
tions extracted from a German text corpus as col-
locational versus non-collocational. Such a manual
classification is essential for the evaluation of com-
putational collocation extraction tools.

1 Introduction
For the extraction of lexical collocations and tech-
nical terms from text corpora, a large number of as-
sociation measures (AMs) have been suggested (see
Evert (2004) for an overview). To assess and com-
pare the practical usefulness of these measures, is-
sues such as the following need to be addressed: the
types of collocation to be automatically extracted,
domain and size of the extraction corpora, the treat-
ment of high frequency versus low frequency data,
as well as the comparison of the outcomes of differ-
ent association measures.

In practice, evaluation results are valid only for
data from specific corpora, extracted with specific
methods, and for a particular type of collocations. A
list of true positives (TPs), against which the extrac-
tion results for different AMs are evaluated, plays a
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key role in an investigation of this kind. Basically
there are two approaches to compiling a list of true
positives:

1. extract the TPs from collocation lexica,

2. compile a list of true collocations occurring in
the extraction corpus.

An essential drawback of the use of collocation lex-
ica for evaluation is that collocation lexica do not
tell us how well an AM worked on a particular cor-
pus. They only tell us that some of the collocations
listed in the lexicon also occur in the extraction cor-
pus and that a particular AM has found them.

Using a list of true collocations occurring in the
extraction corpus, however, requires a good deal of
hand-annotation. Moreover the resulting list of TPs
is strongly influenced by the intuitions of the par-
ticular annotators. In order to minimise the risk of
subjectivity,

a. objective criteria for the distinction of collo-
cational and non-collocational word combina-
tions in the list of candidate data are required;

b. a certain degree of intercoder agreement on the
reference data is important.

The phenomena subsumed by lexical collocations
are manifold, ranging from lexical proximities in
texts to syntactic and semantic units showing se-
mantic opacity, and syntactic irregularity and rigid-
ity. Accordingly there is a variety of definitions
and terminology. Both are influenced by different
linguistic traditions and by the particular computa-
tional linguistics applications for which collocations
are considered to be relevant. We typically find an
opportunistic approach to collocativity, i.e., the def-
inition of TPs depends on the intended application
rather than being motivated by (linguistic) theory,
and it covers a mixture of different phenomena and



classes of collocations. Moreover, even when well-
defined criteria and explicit annotation guidelines
are available, annotators may make different deci-
sions for some of the collocation candidates, be-
cause of mistakes, differences in their intuition, dif-
ferent interpretation of the guidelines, etc. All this
makes it hard to give a systematic experimental ac-
count of the true usefulness of a certain AM for col-
location extraction.

A widely used means for measuring intercoder
agreement is the kappa statistic (Cohen, 1960),
where the observed agreement between coders is
compared with chance agreement. Kappa values
usually lie in the interval [0,1], with zero kappa in-
dicating chance agreement and positive kappa indi-
cating an increasing level of intercoder agreement
beyond chance up to a value of one for perfect
agreement. (Negative kappa indicates genuine dis-
agreement between the annotators.) The precise
interpretation of positive kappa values between 0
and 1 is still open for discussion, though. One
of the widespread interpretations used for natural
language coding tasks, mainly dialogue annotation,
was suggested by Krippendorff (1980):

κ ≤ .67 to be discarded
.67 ≤ κ ≤ .8 shows tentative agreement
κ ≥ .8 definite agreement

(Rietveld and van Hout, 1993) quoted after (Di Eu-
genio and Glass, 2004) give the following interpre-
tation:

.20 ≤ κ ≤ .45 fair level of agreement beyond
chance

.40 ≤ κ ≤ .60 moderate level of agreement be-
yond chance

In (Green, 1997) another interpretation is given:

κ ≥ .75 high degree of agreement
κ ≤ .40 low degree of agreement
.40 ≤ κ ≤ .75 fair to good level of agreement

beyond chance

To reduce inconsistency in the definition of the
type of collocation under investigation, we concen-
trate on two types of PP-verb collocations that are
well defined in the literature, namely German sup-
port verb constructions (Ge.: Funktionsverbgefüge)
and figurative expressions.1 These two phenomena

1An overview on the literature can be found in (Krenn,
2000).

are the main collocation types occurring in PP-verb
cooccurrence data extracted from text corpora.

The paper is organized as follows: in Sections 2
and 6, respectively, we present a collocation anno-
tation experiment and discuss its results based on
the theoretical assumptions made in Sections 3 to
5. In particular, Section 3 gives a general account
on measuring intercoder agreement, in Section 4 we
present the kappa statistic and in Section 5 we de-
scribe an alternative approach for estimating inter-
coder agreement.

2 Experimental setup
In the annotation database of (Krenn, 2000) (which
has been further extended since and used in sev-
eral other publications, e.g. (Evert and Krenn, 2001)
and (Krenn and Evert, 2001)), German PP+verb
combinations are annotated as Funktionsverbgefüge
(FVG) and figurative expressions (figur), according
to criteria described in (Krenn, 2000). These guide-
lines suggest that we deal with two (hierarchical)
binary classifications:

non-
coll.

coll.A

FVG

figur
B

In Section 6 of this paper, we concentrate on the
collocational / non-collocational distinction (step
A ). However, the measures of intercoder agree-
ment discussed in Sections 3 to 5 can also be ap-
plied to step B , or more generally for assessing the
decisions of two coders on any binary variable.

The experiment on intercoder agreement is as fol-
lows: We test the decisions of Krenn (with respect
to step A ) against several other annotators, all na-
tive speakers of German, students and researchers
at the IMS. In particular, Krenn (henceforth BK)
is considered the “expert”, and we want to test
whether the other annotators (henceforth NN) agree
with her decisions, employing pair-wise compar-
isons: BK vs. NN. When looking at the annotated
data it may be necessary to exclude some annotators
who have clearly not understood the instructions or
make obvious mistakes.

BK’s annotation database combines candidates
from various sources and from different experi-
ments. Rather than using this haphazard collec-
tion directly, we want to evaluate agreement on



a well-defined, reproducible2 , and practically rele-
vant subset of the database. The subset we chose
contains high-frequency PP+verb pairs from the
Frankfurter Rundschau (FR) corpus.3 The full
FR corpus was part-of-speech tagged with Tree-
Tagger (Schmid, 1994), enriched with lemmata
and morpho-syntactic information from the IMSLex
morphology (Lezius et al., 2000), and chunk-parsed
with the YAC parser (Kermes, 2003). In addition to
noun phrases (NP) and prepositional phrases (PP),
YAC identifies verbal complexes (VC) and subordi-
nate clauses in the text. All chunks are annotated
with the corresponding head lemma. PPs are an-
notated both with the preposition and the nominal
head. The head lemma annotations of VCs are par-
ticularly useful because they recombine separated
particle verbs. Finally, all possible combinations of
a VC and a PP (represented by their respective head
lemma annotations) within the same main or subor-
dinate clause were extracted as cooccurrences.

A frequency threshold was applied to the result-
ing data set, retaining only candidates with cooccur-
rence frequency f ≥ 30. In a second step, certain
“trivial” combinations were filtered out with hand-
crafted patterns in order to reduced the amount of
manual work. Examples are combinations of any
verb with a PP whose nominal head is a day of the
week (Montag, . . . , Sonntag), a month name (Jan-
uar, . . . , Dezember) or another PP that is clearly
used as a time adverbial. None of the excluded can-
didates was marked as a true positive by BK.4

The resulting subset contains 3,418 PP+verb can-
didates and is called the test set. We split the test set
randomly into 4 equally-sized parts (3×855 candi-
dates, 1×853 candidates), which were given to dif-
ferent annotators along with a coding manual writ-
ten by BK (in German, cf. Krenn (2004)). The anno-
tators were told to mark collocations as either FVG
or figur. Unmarked candidates were interpreted as

2In the sense that it does not depend on the status of the an-
notation database at a specific point in time, i.e., adding new
candidates to the database should not make it difficult or im-
possible to reproduce the set evaluated here.

3The Frankfurter Rundschau corpus is a German newspa-
per corpus, and is part of the ECI Multilingual Corpus 1 dis-
tributed by ELSNET. ECI stands for European Corpus Initia-
tive, and ELSNET for European Network in Language and
Speech. See http://www.elsnet.org/resources/
eciCorpus.html for details.

4Since there can be little doubt that all coders would agree
on the candidates that have been filtered out, this step makes the
annotation task more difficult, potentially reducing intercoder
agreement.

non-collocational. Annotators were forced to make
a decision for every candidate.

3 Measuring intercoder agreement
Note that this discussion is restricted to agreement
between two coders (A and B) on binary variables
(i.e. annotations with two categories).5

The agreement data obtained from the evalua-
tion experiment for annotators A and B can be sum-
marised in the form of a contingency table as shown
in Figure 1: n11 is the number of candidates that
were accepted as a TP by both annotators, n22 is the
number of candidates that were considered a FP by
both annotators, etc.; ni· are the row sums (with n1·
the total number of TPs marked by A) and n· j are
the column sums (with n·1 the total number of TPs
marked by B). The sum n11 +n12 +n21 +n22 = n is
the total number of candidates in the test set (or the
evaluated part).

B + B −
A + n11 n12 n1·
A − n21 n22 n2·

n·1 n·2

Figure 1: Agreement contingency table for two
coders A and B on a binary variable.

It is often more intuitive not to consider the ab-
solute numbers, but rather think in terms of the
corresponding proportions pi j = ni j/n (our notation
here follows Fleiss et al. (1969), and so do the
definitions of po and pc below). The various pro-
portions in this contingency table add up to one:
p11 + p12 + p21 + p22 = p1· + p2· = p·1 + p·2 = 1

An intuitive approach to measuring intercoder
agreement between A and B is simply to count the
number of candidates for which A and B made the
same choice (either both TP or both FP); this is
given by the number

no := n11 +n22 (1)

(the o stands for “observed”); the corresponding
proportion

po := p11 + p22 (2)

is easy to interpret, and should ideally give a value
close to 100% for an unambiguous and repro-
ducible annotation task. However, annotation of

5(Green, 1997) gives an account of a generalized measure
of intercoder agreement where there are more than two coders
and/or categories.



language data is typically not unambiguous, there-
fore a 100%-level cannot be reached in practice.
Another argument comes from mathematics:

Assume that two student assistants were hired for
annotation work. Lazy as humans are, each one of
them just marks p = 5% of the candidates as TPs.
The students work independently from each other,
so they cannot coordinate their choices, which will
therefore only agree by coincidence. The aver-
age proportion of candidates on which the students
agree is p · p (both TP) + (1− p) · (1− p) (both FP)
= 90.5%. A similar argument has also been given
by Carletta (1996).

Taken at face value, an agreement rate of 90%
seems to indicate high reliability: it is equal to or
better than the agreement rates reached by seasoned
and well-motivated experts on similar tasks. Car-
letta (1996) concludes that it is necessary to correct
for agreement “by chance”, suggesting the widely-
accepted kappa statistic (Cohen, 1960). Before we
discuss the properties of kappa in Section 4, let us
call attention to a terminological confusion which
has led many researchers to embrace the intuitive
approach outlined above.

What we want to measure is true agreement,
where both annotators unanimously make the same
decisions based on the annotation manual.

What is often counted under the name “agree-
ment” is the number of candidates for which both
annotators make the same choice, i.e. the surface
agreement.

Some of these identical choices will reflect true
agreement, but in other cases the agreement will be
due to annotation errors or the coders may have had
different reasons for their decisions. The surface
agreement of their choices being pure coincidence6

(which we call chance agreement).
We can summarise this situation in the symbolic

equation:

surface agreement =
true agreement + chance agreement

The problem, however, is that we can only mea-
sure surface agreement. There is no direct evi-
dence on whether identical annotations (by A and B)
are due to true agreement or merely due to chance

6Note that, notwithstanding the tongue-in-cheek example of
lazy students above, agreement by coincidence does not neces-
sarily imply that the coders make entirely random choices. It
rather means that there is no common ground for these deci-
sions (so that they are statistically independent).

agreement. Therefore, it is necessary to correct for
chance agreement in order to arrive at a meaningful
interpretation of the observed surface agreement. In
Sections 4 and 5 we will discuss two different ap-
proaches to this problem.

4 The kappa statistic
The standard method (cf. Agresti (1990)) to cor-
rect the observed surface agreement for chance is
the kappa statistic κ̂ (Cohen, 1960; Fleiss et al.,
1969). Cohen (1960) estimates the amount of
chance agreement from the proportions p1· and p·1
of candidates accepted by A and B. If their choices
were entirely independent, then the average propor-
tion of candidates for which both make the same
decision would be

pc = p1· · p·1 + p2· · p·2
= (p11 + p12)(p11 + p21)

+(p21 + p22)(p12 + p22)

(3)

(The first term is the expected proportion of candi-
dates that both coders accept, and the second term
the expected proportion that both coders reject.)

The kappa statistic is defined as the observed pro-
portion of agreement po minus the expected propor-
tion of chance agreement pc scaled to a standard
range

κ̂ :=
po − pc

1− pc
(4)

As already stated in the introduction, the values of
κ̂ usually lie in the range [0,1].

Mathematically speaking, κ̂ is a test statistic and
can be used to validate the null hypothesis H0 that
the observed agreement is entirely due to coinci-
dence. In other words, that the annotation is not
reproducible at all. A significant amount of evi-
dence against H0 only tells us that there is some
true agreement, however small it may be. This is
hardly a satisfactory result as H0 is quite unrealis-
tic in the first place. We would rather like to show
that there is a substantial or even high degree of true
agreement. As Agresti (1990) puts it: “It is rarely
plausible that agreement is no better than expected
by chance. Thus, rather than testing H0 : κ = 0,
it is more important to estimate strength of agree-
ment, by constructing a confidence interval for κ.”
(Agresti, 1990, 367).

While κ̂ is confined to an interval whose end
points have a clear interpretation (0 = chance agree-
ment, 1 = perfect agreement), it is much less obvi-
ous how to classify the values in between. Various



scales have been suggested for the interpretation of
κ̂ in different areas of application (see Section 1).
These scales are largely (if not solely) based on ex-
perience. Many researchers make the mistake of
comparing the observed value of κ̂ directly with the
critical values of these scales. For instance, Di Eu-
genio and Glass (2004) argue that the minuscule
difference between (4), which they call κCo, and
a simplified version κS&C (Di Eugenio and Glass,
2004, 98) may decide between the rejection and ac-
ceptance of a set of annotations, giving an invented
example where the values happen to lie on either
side of Krippendorff’s threshold of .67. These re-
searchers fail to recognise the uncertainty inherent
in the value κ̂, which is obtained from the observed
data by a statistical calculation. Formally, κ̂ is a
random variable in a statistical model of agreement.
Therefore, it is inappropriate to compare κ̂ to a fixed
scale of critical values without taking this uncer-
tainty into account, which is quantified by its stan-
dard error σ̂.

Fleiss et al. (1969, 325) present the following ex-
pression as a large-sample estimate for the variance
of κ̂:

n(1− pc)
4 · σ̂2 =

p11
(

(1− pc)− (p·1 + p1·)(1− po)
)2

+ p22
(

(1− pc)− (p·2 + p2·)(1− po)
)2

+(1− po)
2 p12(p·1 + p2·)

2

+(1− po)
2 p21(p·2 + p1·)

2

− (po pc −2pc + po)
2

(5)

From (5), we obtain σ̂ as an indicator for the amount
of uncertainty in the observed value κ̂, i.e., to what
extent the sample estimate κ̂ may deviate from
the “true” value κ. Under the usual normality as-
sumption, an approximate 95% confidence interval
(which means that the “true” κ lies somewhere in
this interval with 95% certainty) is given by

[κ̂−1.96 σ̂, κ̂+1.96 σ̂]

(Porkess, 1991, s.v. confidence interval)
The observed values of κ̂ for the experiment de-

scribed in Section 2 are presented in Section 6. The
ensuing discussion is based on their confidence in-
tervals. Depending on whether the lower or the up-
per bound is used, conclusions range from mediocre
(or even poor) to high agreement. However, this
does still not offer us an intuitive interpretation of

the “true” kappa value κ. All we have to go by are
apparently arbitrary critical points from one of the
various scales.

In the following section, we present a different
statistical approach that provides a direct estimate
of the proportion of true agreement.

5 Estimating the rate of true agreement
The definition of the kappa statistic in Section 4
starts from the assumption that there is only chance
agreement between the annotators. This is the null
hypothesis when κ̂ is used as a test statistic.

In the present section, we consider a more real-
istic model that divides the observed surface agree-
ment into true and chance agreement. In this model,
we assume that the test set can be divided into m
candidates where the coders A and B reach true
agreement (set C1), and the remaining n−m can-
didates (set C2) where any observed agreement is
pure coincidence. Let us call this the dual model of
agreement.7

The goal of our model is to estimate the propor-
tion m/n of true agreement. The result is a con-
fidence interval including all values m/n for which
the dual model provides a satisfactory explanation
of the observed agreement data (Figure 1). The ba-
sic procedure to construct the confidence interval
works as follows:

1. for every possible value m ∈ {0, . . . ,n}, divide
the test set into sets C1 (true agreement) with m
candidates and C2 (chance agreement) with the
remaining n−m candidates;

2. apply the methods of Section 4 (or a similar
statistical test) to the set C2; if chance agree-
ment cannot be ruled out as an explanation for
the observed agreement in C2, the correspond-
ing proportion m/n is included in the confi-
dence interval.

For illustration, Figure 2 shows an agreement con-
tingency table for an invented test set with n = 100
(this example is taken from Di Eugenio and Glass
(2004, 99)).

Figure 3 gives a division of this test set into C1
and C2 when there is (hypothesized) true agreement
on exactly m = 40 candidates. Note that the off-
diagonal cells are always zero for C1. Unfortunately,

7No need to say that the dual model is a strong simplifica-
tion of the issue. For a better understanding of the collocation
identification task, psycholinguistic studies would be required
instead of mere frequency counts on intercoder agreement.



B + B −
A + 40 15 55
A − 20 25 45

60 40

Figure 2: Invented example of an agreement contin-
gency table for n = 100.

this division is not unique. Figure 4 gives another
possibility with m = 40. Note that the latter is quite
“extreme” because the coders reach true agreement
only for TPs.

C1 B + B −
A + 25 0
A − 0 15

C2 B + B −
A + 15 15
A − 20 10

Figure 3: A division of the test set of Figure 2 into
sets C1 and C2, assuming that there are m = 40 can-
didates with true agreement.

C1 B + B −
A + 40 0
A − 0 0

C2 B + B −
A + 0 15
A − 20 25

Figure 4: Another possible division of Figure 2 into
sets C1 and C2, also with true agreement on m = 40
candidates.

The fundamental problem faced by this procedure
is that we do not know exactly how to divide the test
set for given m, i.e., how many of the TPs the set
C1 should contain (cf. Figures 3 and 4). The results
of Step 2 above, however, depend crucially on the
particular division that is made.

This ambiguity can be resolved in two different
ways: (a) obtain conservative estimates by trying
all possible divisions; (b) make additional assump-
tions about the proportion of TPs in the set C1. In
the absence of any concrete evidence or convincing
theoretical motivation for the additional assump-
tions required by solution (b), most statisticians opt
for the conservative approach (a). We are also in
favour of (a), in principle, but the range of possible
divisions will often include very extreme situations
(cf. Figure 4), so that the resulting confidence in-
tervals will be too large to be of any practical use.
For this reason, we will compute and present confi-
dence intervals for both approaches. In Sections 5.1
and 5.2, we describe the methods used to determine
whether a given amount m of true agreement is con-
sistent with the dual model.

5.1 Conservative estimates
Let m+ stand for the number of TPs in C1, and
m− = m−m+ for the number of FPs (recall that the
choices of A and B must be unanimous for all candi-
dates in C1); m+ and m− are the diagonal cells of the
agreement contingency table of the set C1 (as shown
e.g. in Figure 3); for given m, the contingency tables
of C1 and C2 are fully determined by the value of
m+.

From the constraint that the diagonal cells of both
contingency tables must be non-negative, we obtain
the following limits for the number of TPs in m:

max{0,m−n22} ≤ m+ ≤ n11 .

In the conservative approach, the proportion m/n
has to be included in the confidence interval when
there is any number m+ for which the resulting con-
tingency table of C2 does not provide significant ev-
idence against chance agreement.

The statistic κ̂ from Section 4 can be used (in con-
junction with its approximate standard error) to test
the null hypothesis H0 : κ = 0 on C2. Alternatively,
Fisher’s exact test (Fisher, 1970, 96f) can be used,
which does not rely on large-sample approximations
and is therefore more reliable when the hypothe-
sized amount of chance agreement n−m is small.
In our evaluation, we compute two-sided p-values
for Fisher’s test.

5.2 The homogeneity assumption
The less conservative approach (b) does not con-
sider all possible divisions of the test set into C1
and C2. In order to fix the value of m+, an addi-
tional assumption is necessary. An example of such
an assumption is homogeneity of C1 and C2, i.e., the
proportion of TPs is the same in both sets (for C2,
the proportion is averaged between coders A and
B). Note that we cannot make this assumption for
each coder individually, since this would require the
overall proportion of TPs to be the same for A and
B (i.e., p1· = p·1).

For a given value m, we can now determine
m+ from the homogeneity assumption and continue
with the test procedure described in Section 5.1;
m/n is only included in the confidence interval
when this particular division of the test set is con-
sitent with chance agreement in C2.

In our implementation, we compute pc (wrt. C2)
directly from the homogeneity assumption and the
observed values p1· and p·1 in the full test set. Then,
we apply a two-sided binomial test, comparing the



observed amount of agreement in C2 with the ex-
pected proportion pc.

6 Presentation and discussion of the
evaluation results

For each pairing BK vs. NN we have computed the
following values: (i) kappa according to (Cohen,
1960), the standard deviation for kappa according
to (Fleiss et al., 1969) and the respective min and
max values for the confidence interval (the confi-
dence intervals are not shown here); (ii) a conser-
vative confidence interval for the rate of true agree-
ment (prop.min, prop.max), cf. Section 5.1; (iii) a
confidence interval for the rate of true agreement
using the homogeneity assumption (homogeneity
min./max.), cf. Section 5.2.

Two major results can be derived from the data:
(1) the conservative estimate is practically use-
less because the intervals between prop.min and
prop.max are extremely broad, see Table 1; (2) the
homogeneity estimate leads to confidence intervals
that can be matched to those for the kappa value, see
Table 2. Thus, the homogeneity assumption opens
up an alternative to the kappa statistic.

Pursuing a conservative approach, i.e., looking at
the min values of the homogeneity interval, we find
roughly four groups: G1 with min > 68%, G2 with
60% < min < 65%, G3 with 51% < min < 57%, and
G4 with min < 34%. G1 and G4 are the two ex-
tremes of intercoder agreement in our experiment.
As regards G4, the low min values and the broad
confidence intervals8 for the homogeneity estimate
indicate poor agreement between BK and the anno-
tators NN8 and N12, whereas high min values and
rather small confidence intervals in G1 provide evi-
dence for strong intercoder agreement between BK,
and NN7, as well as BK and NN9. In between, there
is a broad field with the groups G2 and G3. Adapt-
ing Krippendorff’s interpretation scheme based on
kappa values (see Section 1) to the lower bounds
of our homogeneity intervals we have a new cut-
off threshold with homogeneity min < 60% indicat-
ing no intercoder agreement beyond chance, and the
values above showing tentative to good agreement.

We also find that high intercoder agreement has
been achieved by trained linguists while non-expert
annotators achieve clearly lower agreement with
BK’s annotations. This could be an artefact of the
data sets, i.e., that the different parts of the test set

8The broader the confidence interval the larger is the statis-
tical uncertainty.

were more or less hard to annotate. For instance,
NN7 and NN9 worked on the same data set. How-
ever, the intercoder results in the upper middle field
(NN1, NN4, NN10), stem from the remaining three
parts of the test set. Moreover, from practical work
we know that trained linguists find it more easy to
distinguish collocations from non-collocations than
non-experts do. This also means that annotating col-
location data is a critical task and that we must rely
on expert knowledge for the identification of TPs.

BK vs. NN prop.min prop.max
1 12.16% 86.08%
2 9.24% 85.03%
3 13.92% 78.95%
4 13.33% 85.26%
5 11.46% 84.33%
6 12.63% 83.74%
7 13.92% 89.36%
8 12.51% 59.18%
9 12.98% 88.19%

10 13.72% 84.76%
11 11.61% 78.55%
12 4.34% 60.73%

Table 1: Conservative estimates for intercoder
agreement between BK and 12 annotators (NN1 . . .
NN12).

BK kappa homogeneity interval
vs. NN value min max size

7 .775 71.93% 82.22% 10.29
9 .747 68.65% 79.77% 11.12

10 .700 64.36% 75.85% 11.49
4 .696 64.09% 75.91% 11.82
1 .692 63.39% 75.91% 12.52
6 .671 61.05% 73.33% 12.28
5 .669 60.12% 72.75% 12.63
2 .639 56.14% 70.64% 14.50

11 .592 52.40% 65.65% 13.25
3 .520 51.70% 64.33% 12.63
8 .341 33.68% 49.71% 16.03

12 .265 17.00% 35.05% 18.05

Table 2: kappa and homogeneity estimates for the
intercoder agreement between BK and NN1 . . .
NN12.



7 Conclusion

We have argued that kappa values on intercoder
agreement are hard to interpret, mainly for the fol-
lowing two reasons. (1) The kappa statistic is based
on the assumption that intercoder agreement is only
due to chance (H0), which is rather implausible from
the point of view of linguistics. (2) When interpret-
ing kappa values, confidence intervals are typically
ignored, which can easily lead to a mis- or over-
interpretation of the results. As an alternative to
kappa, we have introduced an approach based on
a distinction between true and chance agreement.
We have then calculated confidence intervals for the
proportion of true agreement (among the observed
surface agreement) between to coders on a binary
variable (collocation vs. non-collocation). The re-
sulting confidence intervals are comparable to those
of the kappa statistic, opening up a way towards
an alternative and more plausible and well-founded
interpretation of intercoder agreement than previ-
ously available with the kappa statistic. Concerning
the collocation identification task, we have obtained
further evidence that the distinction between collo-
cations and non-collocations requires linguistic ex-
pert knowledge. It is important to take this fact into
account when association measures (or other collo-
cation extraction tools) are evaluated against can-
didate lists that are manually classified as true and
false positives.
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