
Asymmetry in Corpus-Derived and Human Word Associations

LUKAS MICHELBACHER, STEFAN EVERT, and HINRICH SCHÜTZE

Abstract

We investigate asymmetry in corpus-derived and human word associations. Most prior
work has studied paradigmatic relations, either derived from free association norms or
from large corpora using measures of statistical association and semantic relatedness. By
contrast, we investigate the syntagmatic relation between words in adjective-noun and
noun-noun combinations and present a new experimental design for measuring the strength
of human associations. Of particular importance for syntagmatic relations are asymmet-
ric associations, whose associational strength is much larger in one direction (e.g., from
Pyrrhic to victory) than in the other (e.g., from victory to Pyrrhic). We develop a num-
ber of corpus-derived measures of asymmetric association and show that they predict the
directedness of human associations with high accuracy.

Keywords association measures; asymmetry; paradigmatic and syntagmatic associa-
tions; corpus-based; elicitation experiment; association norms

1 Introduction

For many tasks in natural language processing (NLP), it is useful to have available an
automatic assessment of how closely two words are related to each other or how strongly
they are associated with each other. Notions of relatedness and association are often de-
fined as catch-all categories that lump together many different ways in which two words
can be related. Corpus-based measures of relatedness and association are typically eval-
uated against data produced by human subjects in elicitation and rating experiments,
again often conflating different types of lexical relations. Rather than taking association
as an atomic notion, we argue in this article that there are four different types of lexi-
cal association that can be classified along the dimensions syntagmatic–paradigmatic and
symmetric–asymmetric as shown in Table 1; and that corpus-based measures as well as
gold standard data should be designed for the type of relatedness that is relevant in a
particular context.

The ideas behind syntagmatic and paradigmatic relations between words have their
origin in the work of de Saussure (1966). Traditionally, the relationship between two
words is called syntagmatic if they occur in sequence:

Combinations based on sequentiality may be called syntagmas. The syn-
tagma invariably comprises two or more consecutive units [...]. In its place in
a syntagma, any unit acquires its value simply in opposition to what precedes,
or to what follows, or to both.

(de Saussure 1966: 121)

In this paper, we use the term syntagmatic in the sense of morphosyntactic relations,
specifically noun-noun compounds and prenominal adjectives.

In contrast, paradigmatic relations are orthogonal to the sequential syntagmatic axis.
Two words are said to be paradigmatically related if they can be substituted for each
other. Such words usually have the same part of speech.

Many prototypical paradigmatic association pairs like girl–boy and good–bad are sym-
metric, by which we mean that they prime each other with similar strength in free associ-
ation experiments. As we will show in this article, syntagmatic associations are frequently
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asymmetric; they consist of two elements where one strongly predicts the other, but not
vice versa.

We give examples for each of the four possible types of association in Table 1. The pairs
bad–good and bird–canary are paradigmatic. The pairs epileptic–seizure and Christmas–
decorations are syntagmatic. The pairs bad–good and epileptic–seizure are symmetric:
their elements prime each other with about the same strength. For example, in the USF
word association norms (see Section 2.2), 75% of subjects give good as a response for
bad, and 76% give bad as a response for good. In our elicitation experiment, we found
that epileptic–seizure received a forward score of .541 and a backward score of .462 which
supports our symmetry claim (see Section 5.1 for a definition of these scores).

The pairs bird–canary and Christmas–decorations are asymmetric. The second element
strongly primes the first, but the first only induces a weak tendency for subjects to name
the second. In the USF data set, 69% of subjects give bird as a response for canary, but
only 6% give canary as a response for bird. Similarly, Christmas–decorations receives a
forward score of 0.266 and a backward score of 0.82, backing our asymmetry claim.

In this article, we demonstrate that, for adjective-noun and noun-noun combinations,
these asymmetry effects are characteristic of human linguistic performance and can be
accurately predicted from corpus data. Since standard evaluation sets such as USF or EAT
and related pair data (see Section 2.2) are not suitable for our purposes – because they
lump together different types of associations and do not measure asymmetry – we designed
and conducted a novel experiment in order to elicit human syntagmatic associations.

The article is structured as follows. In Section 2, we describe our motivation and
the background to our study. In Section 3, we describe asymmetry effects in corpus
data and develop suitable statistical association measures. In Section 4, we present our
experimental design for measuring human syntagmatic associations. Section 5 analyzes the
results obtained for a sample of adjective-noun and noun-noun combinations, and shows
that the directedness of human association is accurately predicted by the corpus data.
Section 6 presents our conclusions.

2 Background

2.1 Motivation for studying asymmetric measures

Tversky (1977) argued that similarity is an asymmetric relation, criticizing the inherently
symmetric aspect of metric-based models of similarity. He backed his view with a number
of rating experiments in which subjects had to assess the similarity between different kinds
of objects, for example figures, letters and countries. North Korea, for example, is judged
more similar to China than vice versa. According to Tversky, the reason for this lies in
the subjects’ feature representation of the two words. A large number of features are used
to represent the concept China, only some of which are also included in the representation
of North Korea. Conversely, a small number of features are used for North Korea, many
of which are part of China’s representation.

Tversky showed that asymmetry in similarity is a cognitive phenomenon; but it can
also be measured in corpus data. In the context of estimating co-occurrence probabilities
for unseen events in language models, several measures of distributional similarity were
discussed (Dagan et al. 1999). While most of the studied measures are symmetric, one
asymmetric measure has received further attention: the alpha skew divergence sα (Lee
1999; 2001). It is a weighted version of the asymmetric Kullback-Leibler divergence (Kull-
back and Leibler 1951). Lee (1999) mentions the subject of asymmetry in similarity, but
does not investigate it further.

Weeds (2002) emphasizes the asymmetric aspect of the skew divergence and its poten-
tial usefulness in capturing asymmetry in similarity. She links asymmetric substitutability
to the hypernymy relation and proposes that fruit and apple are similar to each other but
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Table 1: Relation matrix for stimulus-response pairs

paradigmatic syntagmatic

symmetric bad – good epileptic seizure

asymmetric bird – canary Christmas decorations

fruit is more similar to apple than apple is to fruit. Applied to hypernymy, this would be
reflected in sα(hyper(x), x) being lower than sα(x, hyper(x)) (a lower score means higher
similarity). In an initial experiment, Weeds was able to predict hypernyms and hyponyms
in 156 pre-selected word pairs in over 90% of the cases using the above formula.

In a recent study, Michelbacher et al. (2007) have examined asymmetry in paradigmatic
associations. To capture the kind of asymmetric apple-fruit relation, they define asymmet-
ric rank measures based on Pearson’s χ2 test and conditional probabilities. They gathered
asymmetric association data from the British National Corpus (BNC) and evaluated the
results against data computed from the USF Free Association Norms (see Section 2.2).
The measures were able to predict asymmetry in associations but with a relatively high
error rate.

More recent work in cognitive science has looked at syntagmatic and paradigmatic
associations as inspiration for or tests of computational models (Griffiths et al. 2007;
Dennis 2004; Jones and Mewhort 2007; Schütze and Walsh 2008).

2.2 Free association experiments

This section contains a brief description of the free association experiments and the cor-
responding norms that are related to the research presented in this paper, namely the
so-called Minnesota norms collected by Russell and Jenkins (Jenkins 1970), the Palermo
and Jenkins set (Palermo and Jenkins 1964), the University of South Florida norms (USF,
Nelson et al. 1998) and the Edinburgh Word Association Thesaurus (EAT, Kiss et al.
1973).

The Minnesota norms, Palermo and Jenkins Both norms are closely related. The
Minnesota norms were collected by presenting 100 stimulus words1 to 1,008 college students
of introductory psychology classes in 1952 (Wettler and Rapp 1993). The well-known
Palermo and Jenkins data set was presented in Word association norms: Grade school
through college (Palermo and Jenkins 1964). It is an extension of the previous experiment
including students of different age groups. In addition to the 100 original words, another
100 words more suitable for young speakers were added. A variety of parts-of-speech
including nouns, adjectives, verbs, adverbs and prepositions were used. In both studies,
each stimulus word was presented with a blank line to the right of it and subjects were
asked to write what first came to their mind on the line. 1,000 subjects ranging from 4th
graders to undergraduate students took part in the study.

USF The University of South Florida Word Association Rhyme and Word Fragment
Norms is a collection of word associations compiled by Nelson et al. at the University of
South Florida. Data collection started in 1973 and went on for two decades. More stimulus
words were added over the course of time. The finished data set was published in 1998. On
average, each stimulus word was presented to around 150 subjects and each subject had
to complete a booklet of 100 to 200 words. In total, the database contains 5,019 stimulus
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words. The elicitation procedure was almost identical to the one used by Palermo and
Jenkins (1964). More than 6,000 participants produced nearly 750,000 responses. The
full database with detailed information about every stimulus-response pair is available for
download at http://web.usf.edu/FreeAssociation/.

EAT The Edinburgh Word Association Thesaurus was created by Kiss et al. (1973). It
contains 8,400 stimulus words including the stimuli used by Palermo and Jenkins (1964).
Each stimulus was presented to 100 different subjects. The elicitation procedure was,
again, very similar to Palermo and Jenkins, namely, that subjects were presented a list of
stimuli without context and were asked to write down the first word they could think of.
Subjects were urged to complete the task as quickly as possible. An interactive version of
the data set is available online at http://www.eat.rl.ac.uk/.

2.3 Research using elicited data

In psycholinguistics, researchers have been studying association norms for over a century
to explore the organization of the mental lexicon and how information is retrieved from it
during language production and comprehension (e.g. Clark 1971). We refer the reader to
Mollin (2009) for a more detailed discussion of word association norms in psycholinguistics.
Association norms have also been used as benchmarks for models of human semantic
knowledge (Griffiths et al. 2007).

Church and Hanks (1990) were among the first to observe that measures of relatedness
derived from machine-readable corpora correlate with the human responses given in free
association and rating tasks. A number of studies have confirmed that human associations
can be predicted with the aid of corpus-based association measures (e.g. Spence and Owens
1990; Rapp 2002; Sahlgren 2006; Michelbacher et al. 2007). However, the data sets utilized
in these studies (for example, USF or EAT – see Section 2.2) do not distinguish between
different types of semantic relatedness or association and they only contain a small portion
of syntagmatic combinations. Table 2 gives examples of the various relationships between
stimulus and response that occur in these data sets. The table was compiled by Hutchison
(2003) who classified each stimulus and response pair of Palermo and Jenkins’s norms.
Almost all relations are paradigmatic, but three comprise syntagmatic pairs: on the one
hand, the groups that Hutchison called forward and backward phrasal associates and that
we refer to as syntagmatic combinations in our terminology. On the other hand, the
group labeled associated properties can also be thought of as syntagmatic, for example
in adjective coordinations (a deep, dark hole). In total, only 16.7% of the pairs were
classified into these relations.2 Washtell and Markert (2009) report higher numbers of
syntagmatic relations in free associations. For two data sets, Kent and Rosanoff (1910)
and Russell and Jenkins (Jenkins 1970), they found 27% and 39%, respectively. Apart
from the fact that they used different data sets than Hutchison, a likely cause for the
higher number lies in Washtell and Markert’s definition of syntagmatic. It is more lax
than ours covering meronymy, holonymy and other “harder-to-classify topical or idiomatic
relationships (family–Christmas, rock–roll)” (Washtell and Markert 2009: 1).

Since we focus on syntagmatic combinations, only a low number of stimulus-response
pairs is suitable for our investigation. Hence, we think that it is justified to disregard free
association data in favor of a novel experiment designed for syntagmatic combinations (see
Section 4).

There has been a large body of work on evaluating corpus-derived measures of semantic
relatedness (including Miller and Charles (1991); Resnik (1996); Finkelstein et al. (2002);
Gurevych (2005); Budanitsky and Hirst (2006); Strube and Ponzetto (2006); Gabrilovich
and Markovitch (2007); as well as Lapata et al. (2001) and Keller and Lapata (2003)
for syntagmatic combinations). These studies often use the data set by Rubenstein and
Goodenough (1965) or similar data. Rubenstein and Goodenough’s data contains word
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Table 2: Common relationships between stimulus and response in Palermo and Jenkins
(1964) association norms compiled by Hutchison (2003)

Association Type (and Example) Percentage Rate

Synonyms (afraid–scared) 14.1
Antonyms (day–night) 24.3
Natural category (sheep–goat) 9.1
Artificial category (table–chair) 5.1
Perceptual only (pizza–saucer) 0.0
Supraordinate (dog–animal) 5.6
Perceptual property (canary–yellow) 11.1
Functional property (broom–sweep) 12.1
Script relation (orchard–apple) 6.1
Instrument (broom–floor) 6.1
Forward phrasal associate (baby–boy) 11.6
Backward phrasal associate (boy–baby) 4.1
Associated properties (deep–dark) 1.0
Unclassified (mouse–cheese) 5.1

pairs together with a numerical value indicating the relatedness between the components of
the pair. This value was determined in experiments with humans wherein subjects had to
rate the relatedness between given pairs on a fixed scale. This methodology obscures any
possible asymmetry effect because both words are presented to the user simultaneously.
One goal of our article is to draw attention to different types of association and relatedness
and to the importance of stating clearly which type of relatedness is relevant in a particular
scenario (symmetric or asymmetric, syntagmatic or paradigmatic) and evaluating related
pairs accordingly.

In cognitive linguistics, there is a general consensus about the necessity to support hy-
potheses about linguistic phenomena and theories with usage-based evidence. It remains
unclear, however, which methodological approach to corpus data is most suitable for ob-
taining such evidence, and whether different techniques are needed for different phenomena
and hypotheses. Some recent studies use data elicited in psycholinguistic experiments in
order to evaluate different methods of analyzing corpus data. It has been found, for exam-
ple, that aspects of human language processing can be modeled with association measures
and that different association measures vary in their ability to predict human intuitions
(e.g. Wiechmann 2008; Gries et al. 2005).

We see our study as a further step in this direction. In accordance with the approaches
sketched above, we employ a number of statistical measures and compare their predictions
with data obtained from human subjects. However, we move our focus to a phenomenon
that has not been considered in previous studies, namely the asymmetry of word associa-
tions.

2.4 Right- and left-predictive combinations

Symmetry and asymmetry of syntagmatic relations have been investigated by Kjellmer
(1991):

A large part of our mental lexicon consists of combinations of words that
customarily co-occur. The occurrence of one of the words in such a combination
can be said to predict the occurrence of the other(s). (Kjellmer 1991: 112)

5



These word combinations are either symmetric or asymmetric. In right-predictive
asymmetric combinations such as Pyrrhic victory, bonsai tree or wellington boots, the
first component suggests (or predicts) the second, but not the other way around. For left-
predictive asymmetric combinations, the opposite is the case: the second components of
deadly nightshade, high fidelity, and arms akimbo suggest the first components, but not vice
versa. For our study, we focus on two-word adjective-noun and noun-noun combinations
that occur within noun phrases. Many recurring word pairs of this type tend to appear in
uninterrupted sequence, which makes them more suitable for elicitation experiments than,
e.g., verb-object combinations that are often discontinuous.

Sinclair (1991) introduced the notion of upward and downward collocation. In his
terminology, a collocation – “the occurrence of two or more words within a short space
of each other in a text” (Sinclair 1991: 170) – consists of a base word and a collocate.
In an upward collocation, the collocate is more frequent than the base; in a downward
collocation, the collocate is less frequent than the base. Based on the assumption that
new is more frequent than tree which is in turn more frequent than bonsai, new tree is an
instance of upward collocation and bonsai tree is an instance of downward collocation with
base tree and collocates new and bonsai, respectively. In relation to Kjellmer’s notions, we
expect stronger predictiveness from collocate to base in the case of downward collocation,
and vice versa for upward collocation.

3 Asymmetric association measures

3.1 Corpus data

The corpus associations used in this work are based on data extracted from the XML
edition of the BNC.3 Following Evert and Kermes (2003), we implemented an extraction
pipeline with the following three stages:

1. Add linguistic information to the corpus in the form of part-of-speech (POS) tags
and lemmatization.

2. Extract a list of suitable word pairs (here, adjective-noun and noun-noun combina-
tions) based on POS patterns and other morphosyntactic constraints. Optionally,
the size of the word list can be reduced with a number of linguistic and heuristic
filters.

3. Use statistical measures to compute the association strength of each word pair, based
on co-occurrence frequency data in the form of a contingency table. For our purposes,
special asymmetric association measures are required (see Section 3.3).

The first step of the pipeline uses the lemmatization and C5 part-of-speech tags provided as
part of the BNC annotation. The C5 tagset consists of 61 different tags, which were auto-
matically assigned by the CLAWS tagger (Leech et al. 1994). Our pipeline extracts lemma
pairs rather than word pairs because preliminary experiments indicated that syntagmatic
associations often hold between lemmas rather than particular word forms. Throughout
this article, we refer to lemmas and lemma pairs simply as “words” and “word pairs”.

In the second step, we extracted adjective-noun and noun-noun combinations based on
the automatic POS tagging. Proper nouns were allowed in conjunction with a preceding
adjective or common noun. We did not extract pairs consisting of two proper nouns
because they introduced too much noise. This approach results in the following POS
patterns:

common noun followed by common noun:

[NN] [NN]
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AT0 AJ0 NN1 NN1 VBZ VBN PRP ATO AJ0 CJC AV0 AJO NN1 PUN

The whole soccer team is afflicted with a serious and potentially fatal fever .

Figure 1: Three examples of noun-noun and adjective-noun pairs identified by the extrac-
tion pipeline.

Table 3: 2-by-2 contingency tables with observed and expected frequencies

W1 = w1 W1 6= w1

W2 = w2 O11 O12

W2 6= w2 O21 O22

W1 = w1 W1 6= w1

W2 = w2 E11 = R1C1
N

E12 = R1C2
N

W2 6= w2 E21 = R2C1
N

E22 = R2C2
N

adjective or common noun followed by a proper noun:

([ADJ] ([COMMA | CONJ | ADJ | ADV]* [ADJ])? | [NN]) [NP0]

adjective or proper noun followed by a common noun:

([ADJ] ([COMMA | CONJ | ADJ | ADV]* [ADJ])? | [NP0]) [NN]

The noun-noun pattern for compounds is straightforward. The adjective-noun patterns
are slightly more complex because they are designed to match adjacent as well as more
distant adjective-noun modification. In addition, they allow proper nouns as modifiers to
account for combinations such as wellington boots.

Figure 1 shows a noun-noun pair (soccer team) and two adjective-noun pairs (serious
fever, fatal fever) that were identified by the extraction pipeline.

In order to access the corpus data efficiently, the BNC was indexed with the IMS
Open Corpus Workbench4, preserving POS and lemma information. The Corpus Query
Processor (CQP) was used to match POS patterns and extract word pairs. In the third
step of the pipeline, contingency tables and association scores were computed with the
help of the UCS toolkit5 (Evert 2004). From the 112,102,325 tokens that were indexed, we
extracted 2,014,116 pair tokens, which contained 391,454 different pair types. In order to
remove noise, we applied a frequency filter of f ≥ 3 before the calculation of association
scores.

3.2 Standard association measures

For each word pair (w1, w2), co-occurrence frequency data from the BNC are collected
in two contingency tables, as shown in Table 3. The left table contains the observed
frequencies: O11 is the number of co-occurrences of w1 and w2 in the corpus, O21 is the
total number of co-occurrences of w1 with a different word than w2, etc. The right table
contains expected frequencies Eij under the assumption of statistical independence, which
can be computed from the row sums Ri and column sums Cj of the observed frequencies.
We use Evert’s (2004) notation and terminology.

Based on the observed and expected frequencies, a number of association measures
(AMs) can be computed to quantify the strength of attraction between w1 and w2. In this
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Table 4: Standard association measures expressed as functions of observed and expected
frequencies

association measure formula

frequency f = O11

log-likelihood G2 = 2
∑

ij Oij log
Oij

Eij

t-score t =
O11 − E11√

O11

chi-square X2 =
N(|O11O22 − O12O21| − N/2)2

R1R2C1C2

work, we focus on three well-known measures derived from statistical hypothesis tests: log-
likelihood (G2), t-score (t) and chi-square (χ2) with Yates’ continuity correction applied
(see e.g. Agresti 2002: Ch. 1; Manning and Schütze 1999: Ch. 5).

In addition to these statistical measures, we also consider plain co-occurrence frequency
(f), based on the assumption that a more frequently occurring word pair is more likely to be
interesting. Previous work has shown that co-occurrence frequency performs surprisingly
well in multiword and terminology extraction tasks (e.g. Daille 1996; Krenn and Evert
2001; Wermter and Hahn 2006). Table 4 lists definitions of the four measures in terms of
observed and expected frequencies (Evert 2004: Ch. 3).

3.3 Rank measures

The standard AMs defined in Table 4 are symmetric in the sense that they do not capture
the left-predictiveness or right-predictiveness that Kjellmer observed in many word combi-
nations. All four measures are invariant under transposition of the contingency table, i.e.
the association score remains the same if the rows and columns are exchanged. Michel-
bacher et al. (2007) introduced a rank measure based on the chi-square test to capture the
asymmetry of paradigmatic associations.

In this article, we generalize the notion of a rank measure to arbitrary symmetric AMs
and evaluate the ability of these rank measures to capture the asymmetry of syntagmatic
associations.

In order to transform a standard symmetric AM into a rank measure that computes
separate scores for the left- and right-predictiveness of a word pair, we implement the
following procedure. For a left-to-right rank measure based on t-score (t):

1. Compute symmetric association scores t for all word pairs (w1, w2).

2. For each word w1, create an association list of all components w2 that co-occur with
w1 in the corpus and sort the list by association strength t in descending order.

3. Starting at the top, replace the association scores by ranks 1, 2, 3, . . .6

Right-to-left rank measures are computed accordingly, exchanging w1 and w2 in the rank-
ing procedure.

Table 5 shows the ten nouns (w2) that are most strongly associated with the adjective
rich (w1), together with the association scores computed by the t-score measure (t). We
write the left-to-right rank measure based on t as R→t (w1, w2) and call it the forward rank
of (w1, w2). Note that a small forward rank indicates a high degree of right-predictiveness.
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Table 5: Determining the forward rank of rich man

w1 w2 t

rich man 16.563

rich peasant 12.919
rich country 12.756
rich people 8.386
rich variety 7.423
rich source 7.861
rich color 7.568
rich soil 6.018
rich nation 6.766
rich world 5.714

→

w1 w2 R→t (w1, w2)

rich man 1

rich peasant 2
rich country 3
rich people 4
rich variety 5
rich source 6
rich color 7
rich soil 8
rich nation 9
rich world 10

Table 6: Determining the backward rank of rich man

w1 w2 t

young man 62.492
old man 51.602
tall man 19.270
dead man 18.661
rich man 16.563

poor man 15.986
white man 14.279
married man 14.620
gay man 14.487
big man 14.456

→

w1 w2 R←t (w1, w2)

young man 1
old man 2
tall man 3
dead man 4
rich man 5

poor man 6
white man 7
married man 8
gay man 9
big man 10

For example, R→t (rich,man) = 1 means that man is the noun most strongly predicted by
the adjective rich according to the t-score measure.

In a similar manner, we denote the backward rank of a word pair (w1, w2) according
to t by R←t (w1, w2). As can be seen from Table 6, the backward rank of (rich,man) is
R←t (rich,man) = 5. In this case, the forward rank (1) is lower than the backward rank
(5), indicating higher right-predictiveness than left-predictiveness.

Note that the association score of the pair (rich, man) is t = 16.536 in both association
lists. This score was computed from a single contingency table of observed frequencies,
which is all the information that a standard AM has access to. By contrast, the corre-
sponding left-to-right rank measure R→t looks at the distribution of the association scores
for all word pairs (w1, ·); and the right-to-left measure R←t looks at the distribution for
all word pairs (·, w2). In this way, different degrees of right- and left-predictiveness can be
calculated.

Rank measures are a general and flexible tool for capturing asymmetry effects in word
combinations. They can be applied to any symmetric AM and transform this AM into an
asymmetric measure of right- and left-predictiveness. Each AM gives rise to a different
asymmetric rank measure. Table 7 illustrates this point by showing left-to-right and
right-to-left rank scores for the word pairs heavy smoker and bonsai tree, according to four
different rank measures based on the standard AMs introduced in Section 3.2:
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Table 7: Comparing rank measures based on frequency (f), log-likelihood (G2), t-score (t)
and chi-square (χ2)

w1 w2 R→f R←f R→G2 R←G2 R→t R←t R→χ2 R←χ2

heavy smoker 17 1 9 1 15 1 5 4
bonsai tree 1 64 1 37 1 53 1 25

Rf based on frequency f
RG2 based on log-likelihood G2

Rt based on t-score t
Rχ2 based on the X2 test statistic

According to the first three rank measures, heavy smoker is a strongly left-predictive
combination. The backward rank is 1 in all three cases whereas the forward rank is con-
siderably higher. The rank measure based on χ2 does not agree with the other measures,
suggesting an almost symmetric pair with equal right- and left-predictiveness (although
the backward rank is still slightly lower). The pair bonsai tree is strongly right-predictive
according to all four measures. The forward and backward ranks are in accordance with
the assessment of Kjellmer who used bonsai tree as an example for a clearly right-predictive
combination.

The ranks do not take the frequency of the words into account and are therefore
independent of the magnitude of association strength. For our purpose, this is not a
problem. First, we want to examine asymmetry for each word pair individually without
comparing ranks of different pairs. Second, in an elicitation experiment, low-frequency
words will still trigger responses – and the best responses will receive low ranks. The
ranks tell us how good the associations are relative to the stimulus.

In accordance with Michelbacher et al. (2007), we also measure right- and left-predictiveness
with conditional probabilities.

P→(w2|w1) =
P (w1, w2)

P (w1)
P←(w1|w2) =

P (w1, w2)

P (w2)

We added arrows to emphasize right-predictiveness (P→) and left-predictiveness (P←).
For example, P←(w1|w2) denotes the probability that w1 appears as the first component
in a pair when [ w2] is already given. The probabilities are maximum-likelihood estimates.

Note that because of

P (w2, w1)

P (w1)
=

O11
N

O11+O12
N

=
O11

O11 + O12

the rank measure based on conditional probabilities is identical to Rf . It is therefore not
included separately in our evaluation.

3.4 Analysis of the distribution of ranks

Corpus-based measures of asymmetry are only interesting if such asymmetry is a frequent
phenomenon. As we have argued earlier in this paper, we expect that syntagmatic associ-
ations are often asymmetric and can only be characterized adequately by a measure that
allows for large differences in ranks. In order to explore this property of rank measures,
we cross-tabulated the forward and backward ranks for the 391,454 word pairs with f ≥ 3
extracted from the BNC (see Section 3.1). Rank values were collected into logarithmi-
cally scaled bins (ranks 1–2, 3–5, 6–10, 11–20, 21–35, 36–60, 61–100, 101–160, 161–250,
251–500, 501+), such that all bins contain a similar number of items.
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Figure 2: Cross-tabulation of forward and backward ranks for the log-likelihood measure.
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Figure 3: Association plots of forward and backward ranks for the log-likelihood-based
rank measure RG2 (left panel) and the frequency-based rank measure Rf (right panel).
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Figure 2 shows a bar plot of the cross-tabulation of forward and backward ranks ob-
tained for RG2, the rank measure based on log-likelihood. Bars along the main diagonal
of the histogram – running from bottom to top in the printout – correspond to symmetric
word pairs with nearly equal forward and backward ranks. The greater the distance of a
bar from this main diagonal, the more asymmetric the corresponding word pairs are.

It is obvious that there is a considerable number of asymmetric word pairs with low
forward and high backward rank (bars along the back left of the plot), and also vice
versa (bars along the back right). On the other hand, very low forward ranks (ranks 1–2)
correlate strongly with very low backward ranks, and very high forward ranks correlate
with very high backward ranks (tall bars at both ends of the main diagonal). This is
hardly surprising, since forward and backward ranks are based on the same symmetric
association score: a highly associated word pair is more likely to achieve a low rank both
in the “forward” and the “backward” list. Likewise, a word pair where w1 and w2 are
close to statistical independence is more likely to be assigned high ranks in both lists.

Interestingly, the plot shows many word pairs with forward ranks 1 or 2, but much
higher backward rank (roughly between 10 and 100, along the back left side of the his-
togram). According to RG2 , these word pairs are strongly right-predictive. In comparison,
the number of strongly left-predictive pairs is much smaller – there are no equally high bars
along the back right side of the chart (corresponding to backward ranks of 1 or 2 and for-
ward ranks between 10 and 100). This suggests that right-predictiveness is more common
in English than left-predictiveness, at least for adjective-noun and noun-noun combina-
tions. This observation is supported by our elicitation experiments, in which more word
pairs were found to be right-predictive than left-predictive (see Section 5). The prevalence
of right-predictive combinations is probably related to the fact that the preceding word is
an important factor when deciding which word to produce next. This causal relationship
along the time axis promotes the formation of right-predictive combinations. There exists
no equally strong mechanism for producing left-predictive combinations.

The association plot in the left panel of Figure 3 shows more clearly to what extent
forward and backward ranks are correlated. Black bars above the midlines indicate that
a given combination of forward and backward rank appears for more word pairs than
expected if the rankings were independent (i.e., a positive correlation between forward
and backward rank). Grey bars below the lines indicate a smaller number of word pairs
than expected (i.e., a negative correlation). It is obvious from the plot that very low
forward ranks correlate strongly with very low backward ranks, and similarly for very
high ranks. Again, this shows that very strongly and very weakly associated word pairs
tend to be symmetric according to the rank measure. By contrast, the almost vanishing
bars near the center of the plot show that forward and backward ranks are practically
independent in a middle range (roughly ranks 10–100). Here, the rank measure is able to
make a distinction between symmetric and asymmetric pairs.

A second important question is whether different symmetric AMs lead to different
rank distributions. The right panel of Figure 3 shows an association plot for Rf (the rank
measure based on co-occurrence frequency). The distribution of ranks is strikingly different
from that of RG2 , with forward and backward ranks almost independent for ranks below
about 250. There is a considerable number of highly asymmetric word pairs, characterized
by a very high rank (above 500) in one direction and a low rank (below 35) in the other
direction (black bars along the top and right edges of the plot). This observation may be
surprising at first, but it is easily explained for the left-predictive case by combinations of a
high-frequency word w2 (e.g., disease) with a low-frequency word w1 (e.g., adiposogenital)
that almost always occurs with w2 (and analogously for the right-predictive case).

Association plots for the other two measures are qualitatively similar to the log-
likelihood (G2) pattern, with a somewhat stronger correlation for chi-square (χ2) and
a slightly larger region of near-independence for t-score (t). This is perhaps not surprising
since all three measures are based on statistical hypothesis tests. The observed differences
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wishful thinking

thinkingwishful

Figure 4: The word pair wishful thinking split into a forward and a backward stimulus

between the rank distributions agree with the known tendencies of χ2 to overestimate and
of t to underestimate the significance of association (Evert 2004: 111).

4 Elicitation experiment

Free association experiments have frequently been conducted to gather data about spon-
taneous human associations. In these experiments, a stimulus is presented and the subject
is asked to produce one or more related words, e.g., those words that first come to mind
when thinking about the stimulus.

In this type of experiment (described in Section 2.2), there are no restrictions on what
type of response the subject can give (cf. Table 2). When humans associate freely, they
produce mostly paradigmatic combinations. While there are some syntagmatic associa-
tions in the norms produced from such experiments – e.g., blue → sky or big → deal –
they are always right-predictive, making these norms unsuitable for our purpose.

Nevertheless, as noted in Section 2.3, word association norms do contain a portion
of syntagmatic responses. Furthermore, it has been shown that grammatical stimulus-
response pairs can be collected systematically in elicitation experiments when subjects
are explicitly asked to produce them (McGee 2009). With these findings in mind, we
decided to base our experimental design on classical free associations experiments but
with a restriction to syntagmatic responses.

We instructed subjects to produce responses that result in a well-formed phrase when
combined with the stimulus. The key problem is how to present stimuli in a way that
elicits the desired data without biasing the subjects’ responses.

The experimental design we decided on splits each word pair (w1, w2) into two separate
stimuli: a forward stimulus [w1 ] and a backward stimulus [ w2]. That is, either the first
or the second component of the pair is replaced by the blank to indicate to participants
that a word has been removed and needs to be provided. This design allows for testing
both directions of association, from w1 to w2 and from w2 to w1. An example is shown in
Figure 4.

Subjects were instructed to fill the blank in a way that created a well-formed phrase.
We imposed no other restrictions on admissible responses to avoid any type of bias. In
particular, no context was provided that might have disambiguated ambiguous stimuli or
suggested a response from a particular domain.

Because of this unrestricted nature of the experiment, subjects often produced part-of-
speech combinations that were not compatible with the data extracted from the BNC. Such
unusable responses included determiners, pronouns and cases where subjects interpreted
a stimulus word as a verb or adverb rather than as an adjective or noun. For example,
[cut ] was often extended to cut down or cut off instead of a noun-noun or adjective-noun
phrase such as cut glass. We discarded part-of-speech mismatches in order to be able to
perform a clean analysis of adjective-noun and noun-noun associations.

4.1 Pair selection

We used a hybrid selection method to sample stimuli, adapting the methodology of Krenn
and Evert (2005). We started with a pool P of candidates and took a random sample M
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Figure 5: Sampling procedure for stimuli (illustrated for a sample S2 of right-predictive
word pairs from the pool P2)

from P . We then created a subset Q from M by removing extraction noise and technical
terms. Finally, we took a further random sample S from Q to get the desired number of
stimuli.

This procedure was applied to three different pools:

• P1: all pair types (w1, w2)

• P2: pair types with strong right-predictiveness (according to at least one of the
association measures)

• P3: pair types with strong left-predictiveness (according to at least one of the asso-
ciation measures)

The process is illustrated in Figure 5 for strongly right-predictive word pairs (i.e.,
candidate sets P2/M2/Q2/S2).

The first pool, P1, contains all 2,014,116 pair types that we extracted from the BNC
with the procedure described in Section 3.1.7 The pools P2 and P3 are motivated by
two constraints that any experiment designed to elicit syntagmatic responses must satisfy.
First, we can only present a limited number of stimuli to each subject. This means the
overall number of stimuli must be relatively small. Second, we must ensure that the elicited
data are useful for our evaluation. Since a random sample would mostly contain weakly
associated pairs, it was necessary to bias the selection of stimuli.

To this end, we created a set P2 of strongly right-predictive pairs and a set P3 of
strongly left-predictive pairs, where strong predictiveness was defined as R→(w1, w2) = 1
(for P2) and R←(w1, w2) = 1 (for P3). We chose this criterion to obtain good candidates
for asymmetric word combinations.

To create P2, the rank criterion R→(w1, w2) = 1 was applied to all pairs and for all
four association measures. The four resulting sets (represented by rectangles in Figure 5)
were merged. Multiple occurrences of the same pair were removed, resulting in a pool
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P2 of 40,821 candidates. The same procedure was carried out to obtain P3 with a size of
26,600 candidates.

In the next step, random samples of fixed sizes were drawn from each of the Pi. The
three resulting samples were Q1 (336 pairs), Q2 (240 pairs) and Q3 (240 pairs). The
sample sizes were chosen to be low enough to allow for manual review of all pairs. Pairs
with frequency f ≤ 5 were removed. We then reviewed each of the remaining pairs
and removed extraction noise, rare technical terms and rare proper nouns. Specifically,
technical terms from specialized fields like mathematics, biology, computing, and medicine
were removed. Examples include ileocolonic resection, configurational entropy, Unix file
and non-zero element – terms which are unlikely to be familiar to the general population.

The resulting pools Q1, Q2 and Q3 were the basis for three final random samples: S1

(16 pairs from Q1), S2 (24 pairs from Q2) and S3 (24 pairs from Q3). These 64 pairs
were then replaced by their most frequent surface realizations in the BNC, in order to
ensure that subjects would not be distracted by the use of uncommon base forms from the
automatic lemmatization. For example, wellington boot was turned into wellington boots
and christmas decoration into Christmas decorations.

4.2 Conducting the experiment

Test subjects were randomly split into two groups, group I and group II. When group I
was presented a pair with the first component missing, group II saw the same pair with
the second component missing and vice versa. This procedure ensured that subjects were
not biased by a previous stimulus (e.g., seeing [ tree] after [bonsai ]). Stimuli of types
[w1 ] and [ w2] were split equally between the two groups.

Subjects were given detailed instructions to ensure they would not mistake the exper-
iment for a free association task. They were encouraged to take some time to think of
the stimulus word in different contexts and scenarios. They were also permitted to give
multiple answers, or no answer at all.

The experiment was carried out online at the Portal for Psychological Experiments on
Language.8 The subjects were informed that only native speakers of English were allowed
to participate. The full instructions as well as a complete list of stimuli and responses are
available in the Web appendix9. 168 subjects took part in the experiment, 74 for group I
and 94 for group II. The discrepancy between the two groups is due to the fact that some
subjects did not complete the experiment. We collected a total of 43,101 responses. This
means that on average, a subject provided 4 responses per stimulus.

We only included data from completed experiments in our analysis. We removed
3 pairs – common destiny, independent charts, and old self – because they were never
successfully elicited in either direction. For example, common was never elicited as w1 for
the stimulus [ destiny ] and destiny was never elicited as w2 for the stimulus [common ].
The analysis described in the next section was performed for the remaining 61 pairs.

We lemmatized the subjects’ input for our analysis. Spelling variants were unified
to British English to facilitate the comparison with the corpus data. Manual spelling
correction and normalization was applied when necessary, e.g., Xmas was normalized to
Christmas.

For each subject and stimulus, we kept track of the order in which responses were
given. We assume that the order of elicitation directly corresponds to association strength
in that the first answer given has the highest association to the stimulus word and so on.

5 Experimental results and analysis

In this section, we define the direction scores used to evaluate subjects’ responses and
perform both a qualitative and a quantitative evaluation of the experimental results.
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Table 8: Comparison of our results with free association norms

syntagmatic paradigmatic syntagmatic paradigmatic
stimulus [white ] white [water ] water
No. EAT USF EAT USF

1 wash black black bottle wet drink
2 Christmas red pure works drink cool
3 house snow clean fall tap wet
4 out sheet snow fountain sea swim
5 board ice light slide cold thirsty
7 wedding beach color cooler h2o faucet
6 water nothing paper jug hot pool
8 dress blank red pipe rain thirst
9 man block — park river ice
10 noise blue — balloon thirst cold

5.1 Direction scores

We scored the subjects’ responses using a mean reciprocal rank measure (cf. Voorhees
1999). Two direction scores were defined – a forward score f(w1, w2) and a backward score
b(w1, w2), as given by the following equations:

f(w1, w2) =
1

C([w1 ])

C([w1 ])
∑

i=1

1

ri(w2)

b(w1, w2) =
1

C([ w2])

C([ w2])
∑

i=1

1

ri(w1)

Here, C([w1 ]) is the total number of subjects that were presented with stimulus [w1 ]
and ri(w2) is the rank of w2 in the list of responses to [w1 ] given by subject i; C([ w2]) is
the number of subjects presented with stimulus [ w2] and ri(w1) the rank of w1 in the list
of responses to [ w2] by subject i. If a subject did not produce the response in question,
we assigned rank r = 1000. The highest possible direction score in this scheme is 1.0.

5.2 Qualitative evaluation

The composition of responses given in our study differs considerably from previous associ-
ation norms. As an example, Table 8 shows the 10 highest-scoring responses for white and
water in our syntagmatic experiment and in two free association experiments.10 For this
comparison we did not filter out responses like white out that do not constitute adjective-
noun or noun-noun combinations. Most responses in the free association experiments are
of a paradigmatic nature except for sheet, beach, block, snow and light for the stimulus
white.

The responses in the new experiment, however, exclusively consist of syntagmatic
associations, that is, they all produce well-formed phrases when the response is inserted
into the empty slot of the stimulus.

A qualitative analysis of the 61 pairs revealed four major groups. Group A contains
all pairs where the rank measures conform with human responses in that they agree on
which direction of association is stronger. The bulk of the pairs (48) belong to group A.
Group B is a small group consisting of 4 cases where corpus data and human elicitations
contradict each other. We also found borderline cases where the rank measures provide
evidence for both right-predictiveness and left-predictiveness, but could not be aligned
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with human elicitations (group C, 4 elements). We regard pairs where the rank measures
suggest very strong association (rank ≤ 2) in both directions as a special case and put
these pairs in a separate group of high mutual predictiveness (group D, 5 elements).

Table 9 shows word pairs from the four groups with detailed information on corpus
ranks and scores from the elicitation experiment. For reasons of space, we only give a
subset of the 48 pairs in group A.

For most pairs in groups A and B, the four measures agree on the direction of predic-
tiveness. There were 11 pairs where the four measures did not agree, marked with ‘*’ in
Table 9. In most cases, it is the χ2 measure that disagrees with the other measures.

For about 80% of the pairs – those in Group A – the statistical measures indicate
the correct direction of association. This demonstrates that the rank measures are able
to model human behavior in the elicitation experiment for most pairs. Group B, which
contains pairs where the rank measures failed to make correct predictions, is reassuringly
small with only 4 pairs. There are various possible explanations for the failure of the
rank measures in these cases. For example, the pair missile silos exhibits almost equally
strong predictiveness in both directions according to the subjects. This view is only partly
reflected by the rank measures. The χ2 measure comes close with a low forward and
backward rank. However, the other measures only have a low backward rank, but not a
low forward rank for this pair. They rank other words (e.g., crisis, launcher or technology)
more highly. This discrepancy between human judgments and corpus data could be due
to the fact that missiles were a dominant topic during the cold war – at the time when
the BNC data were collected – and that subjects today are less familiar with them.

Group D contains word pairs where the rank measures indicate the strongest possible
predictiveness in both directions, regardless of which status the human data suggest. The
five phrases in this category are collocations – they are fixed, recurring expressions rather
than free combinations.

A detailed study of the five pairs in D and the four pairs in B is beyond the scope of this
article, but we suspect that corpus data fail to provide a good prediction of human behavior
in these cases because of differences between spoken and written language. For example,
wishful thinking is not very left-predictive according to the human subjects – subjects gave
responses like quick (b = 0.1754), good (0.1651), clear (0.1148) and critical (0.1082) more
often than wishful (0.0068). But in the BNC, wishful is by far the most common adjective
preceding thinking (147 instances vs. 65 for new thinking and 43 for critical thinking).
Other reasons for the discrepancy between corpus-derived and human associations for
groups B and D could be part-of-speech ambiguity (thinking is predominantly a present
participle, not a noun) and dialectal differences – bloody hell and unleaded petrol are British
English expressions that American English speakers may not be familiar with.

One important difference between the rank measures and raw conditional probabili-
ties can be found in all pairs of group D except for bloody hell. We will illustrate the
phenomenon for wishful thinking. Human judgement for this pair is overwhelmingly right-
predictive (f = .9521, b = .0068). The word wishful only occurs with two different nouns
in the corpus and almost all its occurrences are with thinking which in turn occurs with
about 100 other adjectives. This is naturally reflected in the conditional probabilities:
P→(thinking|wishful) = .924 and P←(wishful|thinking) = .0899. However, the associa-
tion score of the two words in the combination wishful thinking is high enough to outrank
all other adjectives that appear with thinking resulting in rank 1 in both directions. This
can simply be interpreted as the rank measures suggesting likely completions to a stimulus
(based on the distribution in the corpus) whereas conditional probabilities are suited to
measure absolute association strength. The other two pairs where conditional probabilities
perform better than the rank measures are South East and laboratory experiments from
group C. Here, the rank measures are ambivalent but the conditional probabilities capture
the correct direction of predictiveness.

For the pair aching void, conditional probability makes the wrong prediction and the
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rank measures are correct. Conditional probability suggests near-symmetry (P→ = .0389,
P← = .0372) whereas the ranks (except for Rχ2) conform with the subjects’ judgement of
left-predictiveness.

5.3 Quantitative evaluation

We have introduced three different approaches to predictiveness and asymmetric associ-
ation: (i) direction scores f and b computed from the elicitation experiment; (ii) rank
measures R→ and R← and (iii) conditional probabilities P→ and P←. The latter two are
based on corpus data. Scores, ranks and conditional probabilities are capable of capturing
asymmetries between the two components of a word pair. In this section, we perform a
quantitative evaluation of how well the predictions made by the corpus-based measures
agree with the human scores.

Our test case is the distinction between right-predictive and left-predictive word pairs.
We coded the human scores as a binary response variable Y : Y = 1 indicates a right-
predictive (RP) and Y = 0 a left-predictive (LP) pair:11

Y =

{

1 if f ≥ b (right-predictive)

0 if f < b (left-predictive)

Analogously, we transformed the conditional probabilities into a corresponding predictor
variable:12

X =

{

1 if P→ ≥ P← (right-predictive)

0 if P→ < P← (left-predictive)

We applied a similar procedure to each corpus-based rank measure. For instance, the
predictor variable for the t-score measure t is given by:

Xt =

{

1 if R→t ≤ R←t (right-predictive)

0 if R→t > R←t (left-predictive)

Recall that a lower rank indicates higher association. Therefore, a pair with R→ > R←

is left-predictive and is assigned a predictor value of X = 0. In the case of equal ranks,
we also assigned X = 1 (right-predictive) because the human subjects – as well as our
corpus data, see Section 3.4 – showed a preference for right-predictiveness – the elicitation
experiment yielded 34 word pairs with f > b, compared to 27 with f < b.

The first four rows of Table 10 show the accuracy of predictions made by the four rank
measures. In order to combine information from all measures, we trained a linear model
on the individual predictors, using a 6-fold cross-validation scheme (5 folds with 10 items
each, and one fold with 11 items).

The data set contains 34 RP and 27 LP pairs. Therefore, a baseline classifier that
assigns every pair to category RP (i.e., X = 1) achieves an accuracy of 55.7%. In our
evaluation, we use a more optimistic cross-validation baseline where the most frequent
category is chosen separately for each of the six data folds.13 The resulting baseline
accuracy of 62.3%, calculated over all 61 items, is reported in the last row of Table 10.

Because of the small sample size used for the evaluation, statistical significance testing
is essential. As an indication of the amount of random variation, we calculated binomial
95% confidence intervals for the proportion of correct predictions, shown in the rightmost
column of Table 10. For the combined model, this means that we ignore the additional
random variation caused by the different training sets used in the cross-validation proce-
dure. We feel that this approach is justified since there is considerable overlap between
the training sets used in different steps of the cross-validation (viz., any two training sets
share 4 of their 5 data folds). If our assumptions are tenable, then the evaluation results
for individual folds can be treated as random samples of size 10 (or 11 for the last fold)
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Table 9: Forward and backward scores and rank measures for a subset of the word pairs
used in the elicitation experiment; ’*’ indicates disagreement of rank-measures on direction
of predictiveness.

f b (w1, w2) R→f R←f R→G2 R←G2 R→t R←t R→χ2 R←χ2

group A: rank measures and direction scores conform

.5891 .2545 Academy Award 1 9 1 2 1 7 1 2

.3328 .0010 ancestral home 1 25 1 13 1 19 1 11

.5551 .1609 cable television 2 7 1 4 2 5 1 2

.0127 .0087 cut glass 1 75 1 46 1 58 1 40

.6760 .0010 felled tree 1 54 1 33 1 45 1 17

.0683 .0021 hunched shoulders 1 16 1 7 1 14 1 2

.0875 .0010 old-fashioned way 1 98 1 60 1 62 4 70

.1667 .0063 rightful place 1 26 1 6 1 15 2 4

.1500 .0496 rope ladder 1 4 1 4 1 4 2 4

.0241 .0010 shrewd idea 3 109 6 49 3 68 10 41

.1719 .0010 thick-set man 1 519 1 169 1 318 1 86

.0641 .0068 well-worn path 1 71 1 34 1 58 1 22

.0127 .0125 *impending retirement 9 18 8 14 9 18 9 9

.0606 .0563 *speech recognition 1 2 1 1 1 2 2 4

.0010 .0099 annual rent 29 2 20 1 28 2 15 7

.0266 .8208 Christmas decorations 11 1 8 1 11 1 9 3

.0010 .0101 female preferences 63 34 92 44 60 34 95 48

.0010 .0312 legal wrangling 151 1 58 1 110 1 25 1

.0081 .1325 smoked mackerel 5 1 3 1 5 1 3 1

.0010 .0031 southern bypass 21 1 15 1 20 1 10 1

.0046 .0426 welcome diversion 17 3 15 1 16 3 8 3

.0032 .0425 *bond issuance 10 1 7 1 10 1 2 2

.0549 .4500 *deadly nightshade 7 1 3 1 7 1 1 1

.0068 .0100 *aching void 5 3 3 1 5 3 1 2

.0478 .3893 *white collar 11 1 6 1 9 1 5 6

group B: rank measures and direction scores do not conform

.0955 .1160 healthy food 6 19 6 20 5 15 13 53

.1562 .1543 missile silos 16 1 8 1 16 1 2 1

.0010 .0063 seasoned campaigners 1 9 1 6 1 9 1 6

.2922 .5301 *precious metals 1 2 1 2 1 2 1 1

group C: rank measures ambivalent

.5411 .4620 *epileptic seizure 2 3 2 1 2 3 2 1

.0761 .0335 *dedicated follower 7 3 2 3 4 3 3 6

.4340 .0237 *laboratory experiments 2 1 1 1 2 1 1 1

.0683 .1836 *South East 1 2 3 2 1 2 5 2

group D: high mutual predictiveness

.2962 .1337 bloody hell 1 1 1 1 1 1 1 1

.1275 .2833 *special needs 1 1 1 1 1 1 1 2

.6810 .2793 toxic waste 1 1 1 1 1 1 1 1

.2613 .1583 unleaded petrol 1 1 1 1 1 1 1 1

.9521 .0068 wishful thinking 1 1 1 1 1 1 1 1

19



Table 10: Accuracy of predictions made by the corpus measures

rank measure correct predictions 95% confidence interval

Rf 88.5% 77.8% . . . 95.3%
RG2 90.2% 79.8% . . . 96.3%
Rt 88.5% 77.8% . . . 95.3%
Rχ2 82.0% 70.0% . . . 90.6%
combined 83.6% 71.9% . . . 91.8%
cond. prob. 90.2% 79.8% . . . 96.3%
baseline 62.3% 49.0% . . . 74.4%

from the same population. Additional support for our approach is provided by the obser-
vation that the empirical standard deviation across the 6 data folds is smaller than the
theoretical standard deviation for binomial samples of the same size.

All rank measures perform well, even compared to the optimistic baseline. The best
result is achieved by log-likelihood (G2) with an accuracy of 90.2%. The binomial confi-
dence interval indicates that the G2 rank measure will achieve a prediction accuracy of at
least 79.8% on larger data sets. Frequency (f) and t-score (t) are tied in second place,
with a score of 88.5%. This is no coincidence: the two measures happen to make identical
predictions for all items in our data set (i.e., Xf = Xt), although they are not equivalent
in general.14 Chi-square (χ2) performs considerably worse than the other rank measures,
but is still much better than the baseline, with a 95% confidence interval ranging from 70%
to about 90% accuracy. Surprisingly, the combined model does not improve on individual
rank measures and is only slightly better than χ2 with an accuracy of 83.6%. Conditional
probabilities perform as well as the best rank measure (but with different predictions).

We used an exact version of McNemar’s test (Hollander and Wolfe 1999: 468–470) to
assess the significance of result differences. This test considers only items for which the
two models to be compared made different predictions. Due to the small sample size, there
are no significant differences between any of the models. In particular, we were not able
to show that G2 is significantly better than χ2 (exact McNemar, p = .063), even though
Table 10 shows a clear difference. However, all models except for χ2 are significantly better
than the optimistic baseline (with p-values ranging from p = .001 for G2 to p = .029 for
the combined model).

Unexpectedly, combining the rank information of all measures did not lead to an
improvement over the best single measure. This can be interpreted as a sign of overtraining,
although the difference may well be due to chance (McNemar’s test yields p = .219 for G2

against the combined model). A simple ranking by co-occurrence frequency (f) once again
performs astonishingly well, reaching the same accuracy as t-score (t). Both measures
only take the first cell of the contingency table into account, but t-score additionally
considers the difference between observed and expected frequencies. It is interesting to
note that G2 is the best of the five models and χ2 the worst, even though they are
both independence tests using information from the full contingency table. A possible
explanation is the tendency of χ2 to overestimate significance in highly skewed contingency
tables (see Dunning 1993; Evert 2004).

5.4 Applications of asymmetric measures

Query expansion, a popular application of association measures in natural language pro-
cessing, is an asymmetric task. It is appropriate to rewrite the query fruit as fruit OR
mango since documents about mangos are necessarily about fruit, but it is not appropri-
ate to rewrite the query mango as mango OR fruit. Clearly, corpus-based measures of
association are only useful in this context if they take such asymmetry into account.
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Being able to measure asymmetry in similarity has potential benefits for other appli-
cations, for example anaphora resolution (e.g. Mitkov et al. 2001). Think of a sentence
from a recipe book: Take a large applei and cut the fruiti into four pieces. Here, with
knowledge about asymmetric substitutability, it would be possible to figure out that fruit
refers back to apple. On the other hand, it would be wrong to co-index apple and fruit in
the following example: Take a large fruiti and cut the applei into four pieces. Asymmetric
association measures could be used to predict the felicity of substitution.

In general, asymmetric measures of similarity are an important factor in all NLP
tasks that benefit from better treatment of mutual substitutability, for example reducing
data sparseness in language models (Dagan et al. 1999) or the automatic acquisition of
selectional preferences (Resnik 1996).

6 Conclusion

In work on semantic relatedness and free association in computational linguistics and
natural language processing, different types of relations between words are often lumped
together. We have discussed two important distinctions in this article, the distinction be-
tween syntagmatic and paradigmatic relations and the distinction between symmetric and
asymmetric relations. Asymmetry in paradigmatic relations (e.g. asymmetric similarity)
has received attention in the past in psychological and corpus-based studies and it has been
shown that asymmetric similarity measures can be of use for a number of applications.

Previous research was often based on free association norms which capture mostly
paradigmatic relations. In this article, we have investigated asymmetry in syntagmatic
relations. We designed a novel experiment setup to collect human data on syntagmatic
combinations. In our study, we compared syntagmatic combinations in corpora and in
human-subject experiments and demonstrated that corpus-derived rank measures and
conditional probabilities can predict the asymmetry of human syntagmatic associations
with high accuracy. We found that conditional probabilities are suited to measure abso-
lute association strength whereas rank measures are a good indicator for which responses
could be the best completion to a given stimulus. We showed that a large proportion of
combinations are asymmetric and that right-predictive asymmetry is more prevalent than
left-predictive asymmetry.

We view our contribution as a first step towards richer models of how corpus data can
be used to predict human lexical knowledge and as a basis for defining appropriate types
of relatedness between words for the needs of different NLP applications.

In the field of corpus linguistics, asymmetry is an important property of collocations
(Kjellmer 1991; Sinclair 1991) but has long been neglected due to a lack of appropriate
techniques for corpus data. Our rank-based asymmetric association measures provide, for
the first time, a suitable empirical operationalisation of asymmetric collocations. In addi-
tion, future theoretical discussions can draw on the results of our syntagmatic association
experiment as a complementary form of evidence.

All rank measures included in our study are based on association measures derived from
statistical significance tests, which are known to correlate strongly with co-occurrence fre-
quency. Rankings obtained from measures of effect size such as Mutual Information, on
the other hand, may provide entirely new perspectives on the right- and left-predictiveness
of syntagmatic combinations. We plan to extend our analysis to a range of well-known
effect-size measures. As we have pointed out in Section 3.3, however, rankings obtained
from conditional probabilities are identical to the frequency ranks R→f and R←f . This ob-
servation suggests that association measures based on conditional probabilities – including
the Dice coefficient and minimum sensitivity (Pedersen and Bruce 1996) – will also lead
to a strong correlation with frequency ranking (and hence with the significance measures
in our study).
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Notes

1previously used by Kent and Rosanoff (1910)
2Since many pairs fall into several categories, the total percentage exceeds 100%.
3http://www.natcorp.ox.ac.uk/
4http://cwb.sourceforge.net/
5http://www.collocations.de/software.html
6Ties are handled as in a typical “sports” ranking: if n consecutive items have the same score, they are

all assigned the lowest free rank r; the next item will be assigned rank r + n.
7Note that no frequency threshold is applied at this stage, resulting in a very large number of pair types.
8http://language-experiments.org/.
9http://www.ims.uni-stuttgart.de/~michells/asymmetry

10The USF data set lists only eight responses for the stimulus white.
11The case f = b did not occur in the human data.
12Again, the case P→ = P← did not occur.
13The baseline is optimistic because the most frequent category is determined from the test fold in each

case, rather than from the training folds. For instance, if the first fold contained 7 RP pairs and 3 LP
pairs, the optimistic baseline classifier would assign all pairs in this fold to category RP. If the third fold
contained 4 RP and 6 LP pairs, the optimistic baseline would assign all pairs in this fold to category LP.

14Note that the difference between these measures and log-likelihood corresponds to a single word pair:
G2 makes 55 correct predictions vs. 54 for f and t. Our experiment therefore provides no reliable evidence
that any of the three measures is better than the other two.
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